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Courteous Behavior of Automated Vehicles
at Unsignalized Intersections via

Reinforcement Learning
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Abstract—The transition from today’s mostly human-driven
traffic to a purely automated one will be a gradual evolution,
with the effect that we will likely experience mixed traffic in
the near future. Connected and automated vehicles can benefit
human-driven ones and the whole traffic system in different
ways, for example by improving collision avoidance and reducing
traffic waves. Many studies have been carried out to improve
intersection management, a significant bottleneck in traffic, with
intelligent traffic signals or exclusively automated vehicles. How-
ever, the problem of how to improve mixed traffic at unsignalized
intersections has received less attention. In this paper, we propose
a novel approach to optimizing traffic flow at intersections in
mixed traffic situations using deep reinforcement learning. Our
reinforcement learning agent learns a policy for a centralized
controller to let connected autonomous vehicles at unsignalized
intersections give up their right of way and yield to other vehicles
to optimize traffic flow. We implemented our approach and tested
it in the traffic simulator SUMO based on simulated and real
traffic data. The experimental evaluation demonstrates that our
method significantly improves traffic flow through unsignalized
intersections in mixed traffic settings and also provides better
performance in a wide range of traffic situations compared to
the state of the art.

Index Terms—Intelligent transportation systems, reinforce-
ment learning, deep learning methods.

I. INTRODUCTION

OVER the past decades we observed a strong increase
in the mobility of the population around the world.

While, in general, this can be regarded as an indication of an
improved quality of life, it does come with a strong increase
in overall and individual traffic, creating a variety of problems
including increased travel duration, high energy consumption,
and increased pollution. A promising and practical solution
to this problem is to increase the efficiency of the traffic.
As intersections represent one of the major bottlenecks of
traffic flow [1], optimizing the management of intersections is
a highly important task. In the past, intersection management
relied on traffic polices, semaphores, traffic lights, traffic signs
and sets of rules. Furthermore, drivers also use turn signals,
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Fig. 1: Our intersection management agent optimizes traffic flow by
assigning virtual red traffic lights to connected autonomous vehicles
(vehicle number 1). Once vehicle 2 is released, the vehicles following
it can also proceed through the intersection.

brake lights and even hand signals to communicate and cooper-
ate with other traffic participants. Traffic control signals are not
panacea for intersection problems [2]. For example, they may
reduce traffic efficiency for low or unbalanced traffic demand.
Although recent works [3], [4] developed more intelligent
adaptive traffic signal control methods, for the majority of all
intersections, which often have only one lane per road and
mostly small traffic volume [5], the use of static road signs
assigning priority has proven to be more efficient [2].

Nowadays, the first automated vehicles are mingling with
the traffic and it is to be expected that their share will steadily
increase in the future. Besides overcoming human limitations
in driving and reducing accidents, these automated vehicles
will supposedly be interconnected and thus offer new, more
efficient ways of communication and traffic management.
Based on the expectation that future traffic will consist of
connected autonomous vehicles (CAVs), a large majority of
current research excludes human-driven vehicles (HVs) in their
development of traffic management approaches. However, it
might take decades for the technology, the infrastructure
and the users to be ready for traffic with only connected
autonomous vehicles [6]. We therefore believe that, for the
near future, applicable traffic management solutions must i)
consider various degrees of mixed traffic, ii) pose no complica-
tions or major adjustment requests for human-driven vehicles,
and iii) not present a traffic disturbance or danger when the
communication between the connected autonomous vehicles
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fails.
One might argue that HVs lack means of efficient com-

munication and coordination with other road users so that
unsignalized intersections with mixed traffic cannot benefit
from the introduction of CAVs [7]. However, Ulbrich et al. [8]
showed that humans cooperate with other traffic participants
to improve the whole traffic utility. Consider, as an example,
the situation shown in Fig. 1. Even though vehicle 1 has
higher priority and can proceed through the intersection before
vehicle 2, its driver might prefer to yield to vehicle 2 so that
the traffic behind vehicle 2 can be released sooner.

In this paper, we propose a novel centralized method to im-
prove intersection management in mixed traffic. Our approach
learns a policy for CAVs that maximizes the overall utility
while at the same time showing courteous behavior [9]. We
make the following contributions:
• We present a centralized intersection management method

based on deep reinforcement learning that improves traf-
fic performance at unsignalized intersections in mixed
traffic scenarios.

• We introduce return scaling for training in environments
with a large imbalance of cumulative rewards at different
states. In our case, this helps to balance policy updating
of states with different traffic densities, in particular to
counteract the large cumulative reward collected in heavy
traffic, which would otherwise dominate the stochastic
gradient descent process and make the policy unstable
for states in sparse traffic.

• We present a comprehensive performance comparison for
various traffic densities and changing rates of CAVs to
demonstrate the potential of our approach.

We conduct experimental studies in the traffic simulation en-
vironment SUMO [10] and show that our method outperforms
the state-of-the-art intersection management method on a wide
range of traffic densities with varying traffic distributions on
the incoming lanes.

II. RELATED WORK

Among the first ones to propose an intelligent intersec-
tion management system were Dresner and Stone whose
reservation-based approach [11], [12] divides the junction with
intersecting trajectories into a grid of tiles. Their autonomous
intersection management approach, realized as a centralized
controller, applies a first-come-first-served (FCFS) strategy to
deal with the requests by CAVs for time slots of the tiles
along their trajectories. To accommodate HVs they employ
traffic lights and the so-called FCFS-light policy [13], [14].
Later, this framework was extended to allow for the centralized
intersection management to set the speed profiles of vehicles
with cruise control [15]. To improve the performance of
FCFS-light, Sharon and Stone introduced hybrid autonomous
intersection management [16]. With this extension, requests of
CAVs can be approved regardless of the traffic lights if there
are no HVs in the intersecting routes.

In general, the methods based on autonomous intersection
management [11] provide a relative advantage to CAVs over
HVs, which, in our opinion, should be avoided as it might

cause the public to repel automated vehicles. Furthermore,
human drivers will be more sensitive to stopping and waiting
than the passengers in CAVs. We therefore suggest that the
benefit brought by intersection management and CAVs in
general should be evenly shared with human drivers.

Lin et al. developed a method similar to the FCFS-light
policy [17]. It reserves conflicting sections among different
routes instead of the grid of tiles. Another first-come-first-
served reservation based method has been proposed by Bento
et al. [18]. They suggest to control both CAVs and HVs via
speed profiles sent by the intersection management unit. This
places an undesirable burden on human drivers to follow a
given speed profile and additionally even requires all HVs to
be connected.

The described approaches make the vehicles roughly fol-
low a first-come-first-serve strategy to traverse intersections.
However, as shown by Meng et al. [19], the performance of
an intersection management strategy mainly depends on the
passing order of vehicles and not so much on the individual
trajectory planning algorithms. As the computation time grows
exponentially with the number of considered vehicles [19],
often simplifying assumptions are made including linear con-
straints, no overtaking, no lane changing, constant speed,
and constant traffic input. The coordination of the passing
order can mitigate control uncertainties, which makes it more
suitable for mixed traffic. Based on this idea, our work is
aimed at finding better passing orders, while having vehicles
drive based on their own trajectory planning model.

Qian et al. [20] assign priorities representing the passing or-
der to vehicles. While CAVs receive the priority from a central
control unit and plan trajectories accordingly, the passing order
of HVs is regulated by traffic lights. With high rates of HVs,
this potentially results in an inefficient, mostly first-come-first-
served control. Fayazi et al. [21] propose to formulate the
intersection management problem as a mixed-integer linear
program. Their controller assigns times of arrivals to a virtual
access area around the junction to CAVs, while HVs are
regulated by traffic lights.

The approaches of these related works are already out-
performed by Webster’s method or fixed-time traffic signal
controllers when over 10% to 20% of the vehicles are driven
by humans [11], [13], [17], [21]. The exception is our previous
state-of-the-art learning-based adaptive traffic signal controller,
which further outperforms these two controllers in any traffic
flow range and reduces the average travel time by up to 30% to
60% in the experiment with real-world traffic input [4]. There-
fore, we evaluate our proposed method mainly against [4] in
a wide range of dynamic traffic demands and show that the
performance gain is available even with a small portion of
CAVs in the traffic system.

III. METHODS

Deep reinforcement learning has shown great potential
for solving complex decision making and controlling prob-
lems [22], [23]. Accordingly, we model the intersection
management task at unsignalized intersections as a Markov
Decision Process, where the agent follows a policy π(a | s)
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(a) Three-way intersection with six routes. (b) Four actions.

Fig. 2: Common regulation of a right-hand traffic three-way intersec-
tion (a). The high-priority-routes are W-E, W-S and E-W. The low-
priority-routes are S-W and S-E. Route E-S has intersecting routes
with higher and lower priority. The proposed set of actions (b) stops
CAVs on routes along the indicated directions.

in a specific environment. Based on its state st the agent
selects an action at ∈ A according to the policy, transits to a
successor state st+1 and receives a reward rt ∈ R. The agent is
aimed at maximizing the expectation of the return (discounted
cumulative reward) G(st) =

∑
i≥t γ

i−tri, where γ ∈ [0, 1] is
the discount factor.

To find the optimal policy, we use proximal policy opti-
mization [23] due to its stability, good performance and ease
of implementation. For a policy πθ parameterized by θ, the
algorithm maximizes the following objective:

Jθ = Et
[
min

(
ρt(θ)At, clip (ρt(θ), 1− ε, 1 + ε)At

)
+ βentropy ·H

(
πθ(st)

)]
, (1)

where the expectation is taken over samples collected by
following πθold , and ρt(θ) = πθ(at|st)/πθold (at|st) is the impor-
tance sampling ratio. The function H represents the entropy
of the current policy and βentropy adjusts the strength of
entropy regularization. The term At is a truncated version
(on trajectory segments of length up to K) of the generalized
advantage estimator [24], which is an exponentially-weighted
average (controlled by λ):

At = δt + (γλ)δt+1 + · · ·+ (γλ)K−1−tδK−1, (2)

where δt = rt+γVφold(st+1)−Vφold(st). The value function Vφ,
parameterized by φ, is learned by minimizing the following
loss (with coefficient βvalue):

Lφ = βvalue · Et
[
‖Vφ(st)−G(st)‖22

]
. (3)

Our work is aimed at training a centralized agent for an
intersection that timely stops the CAVs on the routes with
higher priority to let the vehicles on conflicting routes with
lower priority pass, so that the performance of the whole
system is optimized. Since this is similar to red traffic lights
for CAVs on the routes with higher priority, we denote our
method as Courteous Virtual Traffic Signal Control (CVTSC).
We evaluate our proposed approach on the most common type
of three-way intersections as illustrated in Fig. 2. By adjusting
the state and action representations, our approach can easily
be generalized to other intersection layouts, as we show for
the real-world intersection in Sec. IV-E.

A. Background

As we focus on an isolated intersection, we assume that the
vehicles can drive freely after they passed the junction and
entered the outgoing lanes. Thus the vehicles on the outgoing
lanes do not influence the intersection management. However,
unlike in our previous work [4], in which we only considered
vehicles in front of the stop lines, we here also take the
vehicles into account, which already passed the stop line but
not yet entered the outgoing lanes. This is necessary as at
unsignalized intersections vehicles very often choose to wait
after stop lines and coordination may happen there inside the
junction.

In the following we give some definitions of quantities
relevant to our approach:
• Throughput (NTP): The number of vehicles that enter

outgoing lanes during step t is denoted NTP
t .

• Travel time (Ttravel ): For each vehicle passing a junction,
its travel time is measured as the time period starting from
its scheduled spawning time in the simulator (accounting
for potential delays caused by traffic jams at the inter-
section) and ending when it enters an outgoing lane. For
vehicles not released at the end of an episode, the travel
time is counted until the episode ends.

• Traffic flow rate (F ) and Saturation flow rate (Fs): F
represents the number of vehicles (in vehicles per hour
v/h) that pass through a point, e.g., an intersection or one
lane, in unit time. The term Fs is a constant representing
the theoretical upper limit for the traffic flow rate.

B. Action Space

For the intersection in Fig. 2a we assume that vehicles
drive according to the priorities predefined by the road signs,
where the diamond indicates priority roads and the triangle
indicates yield. Vehicles on the routes with lower priority have
to wait until there is enough gap on the conflicting routes with
higher priority before passing the junction. Note that in Fig. 2a
the route E-S has intersecting routes with higher and lower
priority.

To obtain courteous behavior for CAVs on routes with
higher priority, without loss of generality, we define a discrete
set of four actions {(), (W-E), (W-E, W-S), (W-E, E-W,
E-S)} as the action space A in relation to Fig. 2b. The
indicated directions show the corresponding routes on which
the intersection management unit commands CAVs to halt
before the respective stop lines to give priority to vehicles
waiting on intersecting routes with lower priority. The action
restricting no routes uses the default priorities to manage the
intersection. We set the duration of each action to 1 second.
A categorical policy is learned: during training the actions
are sampled according to the output distribution, while during
testing the action with the highest probability is always chosen.
When a new action at is chosen, CAVs on the routes indicated
in at will receive stopping commands, while the instruction
for the routes restricted by at−1 is canceled, if they are not
regulated by at. If a CAV receives a stopping command while
being too close to the stop line, it will continue through
the intersection thus ignoring the command. Acceleration,
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collision avoidance and safe distance are managed by the low-
level controllers of the individual vehicles (both CAVs and
HVs).

C. State Space

Due to the restriction of sensors and wireless communica-
tion, we assume that the intersection management unit can
collect information of vehicles that are within a distance
of 150m along the road measured from the center of the
intersection. We assume that every vehicle’s state, composed
of continuous values (its position along the road, velocity
and time since entering intersection) and discrete values (a
binary value for CAV or HV and optionally a route index
indicating the driving direction if the lane contains more than
one route), is available to the control unit. Similar to our
previous work [4], the state st of the intersection at time t
is given by a vector that contains the structured information
of vehicles in it. The intersection is divided into several lane
segments. The capacity of each segment is the maximum
amount of vehicles in it during a traffic jam. The states of all
vehicles in one segment ordered by their distances to the stop
line constitute a part of st with a fixed length. Default values
are given when fewer vehicles are present than the capacity.
The states of all lane segments are concatenated into st in a
fixed order.

As described in Sec. III-B, only CAVs are controlled by
the agent. Every 1 second a new action should be chosen
according to the new state. However, at certain points in time
there are no CAVs in the intersection and including these states
in training hinders the learning process. We therefore remove
states without CAVs from the training data. As a result, the
influence of actions is not limited to a fixed interval and the
duration of one step in the learning process can be any positive
integer in seconds. To deal with this variable step length, we
employ the method of adaptive discounting as proposed by
Yan et al. [4].

D. Reward Function

The common objective of intersection management methods
is to improve the efficiency while keeping a certain level of
fairness for all vehicles. In this work, we extend the idea
of a reward function with equity factor [4]. Instead of using
Ttravel

η , we propose to use ηa · Ttravel + ηb as the reward for
each released vehicle, where η, ηa and ηb are equity factors.
Due to the flexible step lengths discussed above, the reward
of each step rt is calculated by accumulating discounted
rewards generated during step t which might contain up to
k environment steps (each one second). I.e., we accumulate
the contribution of NTP

t released vehicles by

rt =

k−1∑
i=0

γi
NTP
t i∑

j=1

(ηa · τj + ηb), (4)

where NTP
t i is the throughput of the ith second in step t and τj

is the travel time of the jth released vehicle in the ith second.
The values of ηa and ηb are selected as by Yan et al. [4]

based on two heuristics. First, we favor releasing each vehicle

as soon as possible for the purpose of efficiency. The second
heuristic aims at equity by considering a traffic situation,
where one vehicle waits for saturated traffic flow on an inter-
secting route. Since efficient traffic flow on the high priority
route should not be achieved on the expense of accumulating
too large waiting time on the single vehicle, we increase the
reward contributed by each released vehicle according to its
travel time. This linear relation between reward and travel time
is more intuitive than the previous exponential formulation.
Moreover, the additional free variable in this formulation can
be used to scale the rewards of single released vehicles to
keep them around unity, which is beneficial for hyperparameter
tuning in common deep reinforcement learning setups.

E. Return Scaling

According to the reward definition, the return G(st) is
mainly influenced by the throughput and the travel time of
released vehicles. Since both of them increase with the traffic
input, the scale of G(st) could vary from less than 5 to over
100 if the state of the intersection changes from nearly empty
slow to saturated shigh. Consequently, shigh would have a much
larger impact on πθ and Vφ during the update phase, making
the learning process of a policy for light traffic less stable.

We introduce return scaling to resolve the issues caused by
imbalanced return of states, which has shown to be critical for
convergence with low traffic volumes in our experiments. In
order to reduce the difference between G(slow) and G(shigh),
we scale the cumulative rewards before the update phase with

G(st) = ρ(st) ·
∑
i≥t

(γ
∑i−1
j=t kj )ri, (5)

where k is the number of environment steps (each one second)
in one step of learning process. The scaling factor ρ is defined
as

ρ(st) = (N
V
c /nV)ξ, (6)

where nV and NV
c are the current number of vehicles in

the intersection and its capacity, respectively, and ξ is a
hyperparameter.

IV. EXPERIMENTS

A. Experimental Setup

We use the open-source traffic simulator SUMO [10] to train
and evaluate various intersection management agents. Besides
simulated traffic episodes we also evaluate our approach on
real-world rush hour traffic demand. For all roads we set a
speed limit of 50 km/h. We compare our approach CVTSC
to baselines managing the intersection with road signs (RS)
defining static priorities for routes and with traffic lights (TL)
controlled by a deep reinforcement learning agent according
to our previous work [4]. A possible set of green phases for
the three-way intersection is shown in Fig. 4.

Two fully connected networks θ and φ are used as the
policy and value function estimators. They both have an input
layer of size 343 and two hidden layers of size 2,048 (ReLU)
and 1,024 (ReLU). The output layer is of size 4 for θ and 1
for φ. A grid search was used to select the hyperparameters.
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Fig. 3: Results obtained in evaluation during training for all agents with varying CAV rates in traffic (solid lines) and an ablation study for
the usage of the return scaling (dashed black line). The plots show the mean with standard deviation, where the latter is scaled by ±1/10
for the travel times (for clearer visualization), over three non-tuned random seeds. By the end of each episode there are still some vehicles,
which have not passed the junction. The travel time for such a vehicle is calculated with Tepisode−Tspawn, where Tepisode is the episode duration
and Tspawn is its scheduled spawning time in the simulator.

Fig. 4: Traffic light green phases for the intersection in Fig. 2a.

We use 5e−6 as the learning rate for the Adam optimizer
and 0.001 as the coefficient for weight decay. For proximal
policy optimization algorithm, we use 32 actors, the clipping
threshold of ε = 0.001 and the discount factor of γ = 0.98.
For the return scaling factor, we use ξ = 0.2, which is found
to be the optimal value in the range of (0, 1]. In each learning
step mini-batches of size 100 are used to update the agents in
8 epochs. The number of mini-batches in each learning step is,
however, variable due to the varying step lengths. The equity
factors ηa and ηb for reward calculation are set to 0.0027 and
0.946. The training process of 150 k steps takes about 40 to
60 h (depending on the corresponding CAV rate) running on
four NVIDIA TITAN X GPUs, while CPU computation is not
a limiting factor.

B. Training Setup

Most current related work has been developed and tested
with simplified traffic demand, such as constant traffic input
to the intersection. We challenge our approach and train it
with more dynamic traffic input ranges to cover as many real
traffic scenarios as possible. For the three-way junction in
Fig. 2a the saturation flow rate Fs of each incoming lane is
1 670 v/h and as it is very rare that two non-conflicting routes
are simultaneously saturated, we set the traffic demand range
to [Fmin, Fmax] = [0, 3 000] v/h.

We train our agents online on simulated traffic episodes
with a duration of 1 200s. First, the total traffic input Fbegin is
randomly sampled in [Fmin, Fmax]. Then Fend is sampled uni-
formly within [max(Fmin, Fbegin − 1 500),min(Fmax, Fbegin +
1500)]. After that the beginning and ending traffic flow for
each route is randomly sampled from an uniform distribution,
such that they sum up to Fbegin and Fend, respectively. Finally,
the traffic flow during the episode is generated by linear
interpolation between these two values for each route. We
train five agents (a1, a3, a5, a7, a9), each corresponding to a
fixed CAV rate of [10, 30, 50, 70, 90]%, corresponding to the
expected increasing CAV rates in the future traffic.

C. Evaluation during Training

To monitor the learning process the performance is evalu-
ated for traffic input of different ranges: [0, 1 000], [500, 1 500],
[1 000, 2 000], [1 500, 2 500], [2 000, 3 000]. The generation of
traffic demand is analogous to that of training episodes except
that the total traffic inputs at the beginning Fbegin and end Fend
are sampled independently in the five given ranges.

The plots in Fig. 3 show the performance of agents trained
with different CAV rates and present an ablation study for the
usage of the return scaling. The agent a5 w/o rs is trained with
a CAV rate of 50% without using return scaling. We analyze
the throughput in percentage of released vehicles among all
spawned vehicles, the travel time of released and not released
vehicles at the highest traffic density level and the travel time
of released vehicles at the lowest level. The calculated travel
time is the mean among all released or not released vehicles
during three evaluation episodes. We analyze the throughput
and travel times instead of the accumulated reward as they give
us a better estimate of the overall performance. The variance
of the travel times is of particular interest as it is a good
indicator for the equity. Large variances correspond to some
vehicles with long waiting times at the intersection.

As illustrated in Fig. 3a, CVTSC with higher CAV rate
leads to more throughput, more efficient clearance (lower
average Ttravel ) of the intersection and more fairness (shown
by lower standard deviation of Ttravel ) to all the vehicles. As
expected, from Fig. 3b and the travel time plots of Fig. 3a,
we observe that the agent without return scaling fails to learn
an efficient policy for light traffic, although its performance
is similar to that of a5 in heavy traffic. We plan to conduct
further investigation on return scaling, in particular whether it
is applicable to a broader class of problems or can be replaced
with other methods like γ-tuning.

D. Evaluation on Simulated Traffic Demand

We first test our agents with simulated traffic episodes, each
with a duration of one hour. For each of the five traffic demand
levels described above, we first create 50 traffic episodes with
spawning time of each vehicle following the procedure to
that for evaluation during training. Then we generate five
sets of mixed traffic episodes with different CAV rates by
randomly setting each vehicle as CAV or HV according to the
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Fig. 5: Performance comparison of our CVTSC with baselines RS
and TL in traffics with different CAV rates. For each controller with
each traffic density, the mean (opaque bars) and positive standard
deviation (translucent bars) of Ttravel are calculated over all vehicles
(including released and not released) of 50 simulated traffic episodes.
Each CVTSC agent is trained and evaluated in traffics with its
corresponding CAV rate.

Traffic Input
(v/h)

Throughput (%)

RS a1 a3 a5 a7 a9 TL

0 ∼ 1 000 99.4 99.4 99.4 99.4 99.4 99.4 99.4
500 ∼ 1 500 99.2 99.3 99.3 99.4 99.3 99.4 99.2

1 000 ∼ 2 000 91.1 97.7 98.6 99.0 99.1 99.2 98.5
1 500 ∼ 2 500 72.2 85.3 90.6 93.5 94.7 96.8 88.5
2 000 ∼ 3 000 59.8 74.6 82.1 85.8 88.5 91.9 77.9

TABLE I: Throughput (%) of considered methods in Fig. 5.

penetration rate. Note that the baseline methods road sign (RS)
and traffic light (TL) do not distinguish between CAV and HV.
Following this setup, we test both baselines and our trained
agents with identical number of vehicles and same spawning
times. In the following, the five agents are first tested with
their corresponding CAV rates to evaluate their performance
against the baseline methods. Then we cross-evaluate them on
settings corresponding to different CAV penetration rates.

1) Performance of Intersection: The performance is shown
in Fig. 5 and Table I. For all the tested traffic density levels, our
CVTSC agents can improve the performance of the unsignal-
ized intersection. Not only more vehicles are released during
the same period, but also the mean and standard deviation of
their travel times are reduced. The higher the CAV rate is,
the better our approach performs. The performance gain of
CVTSC on the lowest traffic density is not obvious, because
nearly no vehicles have to stop at the junction. When there is
little traffic, employing TL can cause unnecessary stopping due
to the transition phase (amber or red lights). In heavier traffic
over 1 500v/h TL outperforms a1 by a little margin. However,
it is outperformed by CVTSC when 30% or more vehicles are
CAVs.

2) Performance of Vehicle Groups: In contrast to the rel-
ative advantage of CAVs over HVs suggested by the meth-
ods based on autonomous intersection management [13], our
CVTSC tends to share the performance gain evenly between
the two types of vehicles. Fig. 6 shows how CVTSC can
increase the intersection management performance while keep-
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Fig. 6: Performance comparison of different vehicle groups at traffic
demand 1 000 ∼ 2 000 v/h. The plotted travel times show the median,
lower quartile and higher quartile over all released vehicles among
all evaluated episodes. The plotted throughput is the percentage of
released vehicles among all spawned vehicles throughout all episodes.

ing the balance between different vehicle categories. Since the
actions are executed only for CAVs on the main road, we
divide vehicles on the main road into Main road CAV and
Main road HV and assign all vehicles on the side road to a
third group Side road all. As illustrated, the performance gain
against RS is mainly caused by the improvement of the traffic
on the side road. With only 10% CAVs the throughput of the
side road traffic is increased from 74.3% to 95.6% and the
median travel time is decreased by 61%. As a necessary side
effect, the courteous behavior adds about 13 s to the median
travel time of CAVs on the main road and slows down some
HVs following the CAVs consequently. However, the median
travel time of Main road HV and the throughput of both
vehicle groups on the main road are nearly not influenced.
With growing rate of CAVs in traffic, the performance of the
traffic on the side road continues to be improved while the
initial disadvantage for the main road is compensated.

3) Comparison of Agents: To cross-evaluate their perfor-
mance on other traffic settings than their natives, we further
test each agent (a1 to a9) on the five different CAV rates on
50 simulated episodes on each of the five traffic densities.
Since CVTSC brings nearly no measurable difference for the
lowest traffic density, only the results for the other four traffic
densities are listed in Table II.

We observe that all trained CVTSC agents outperform RS in
any mixed traffic setting. Furthermore, two significant patterns
can be observed in the results. First, for each CAV rate the
agents trained with similar rate values are among the best, as
expected. Second, as the CAV rate increases the performance
of all agents is continuously improved. Interestingly, a5, the
one trained with CAV rate of 50%, outperforms or performs
equally well as a7 and a9 even in settings where CAVs are
the majority. We suppose this is because a5 during training is
exposed to more diverse traffic situations, especially ones with
fewer CAVs in the intersection. As shown in Fig. 5 and Fig. 6,
the margin of the performance gain decreases with increased
CAV rate. Even though a7 and a9 can handle highly automated
traffic better than a5, the performance gain is so small that it
can not compensate the performance loss when occasionally
more HVs drive in the intersection.
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Traffic Input Average Ttravel [s] Throughput [%]

CAV Rate Input Flow [v/h] a1 a3 a5 a7 a9 a1 a3 a5 a7 a9

10%

500 ∼ 1 500 25.8 25.7 25.8 26.3 27.5 99.3 99.3 99.3 99.3 99.3
1 000 ∼ 2 000 63.2 69.9 80.8 102.1 131.4 97.7 97.4 96.9 95.8 94.2
1 500 ∼ 2 500 287.8 299.3 339.0 364.2 432.3 85.3 84.7 82.1 80.6 77.1
2 000 ∼ 3 000 471.0 482.5 517.8 554.4 610.1 74.6 73.9 72.0 69.3 65.9

30%

500 ∼ 1 500 24.7 24.3 24.4 24.9 24.8 99.3 99.3 99.3 99.3 99.3
1 000 ∼ 2 000 42.1 40.0 43.4 49.4 58.7 98.5 98.6 98.6 98.2 98.0
1 500 ∼ 2 500 213.4 190.0 204.2 237.9 274.1 89.5 90.6 90.0 88.1 85.9
2 000 ∼ 3 000 367.3 334.2 347.0 411.7 430.6 80.3 82.1 81.4 77.5 76.6

50%

500 ∼ 1 500 24.1 23.6 23.6 23.9 23.9 99.3 99.3 99.4 99.3 99.3
1 000 ∼ 2 000 36.0 33.7 33.5 35.6 38.9 98.9 99.0 99.0 98.9 98.7
1 500 ∼ 2 500 191.0 145.5 138.8 159.7 174.7 90.6 93.2 93.5 92.3 91.8
2 000 ∼ 3 000 346.9 269.0 267.0 308.6 313.4 81.4 85.9 85.8 83.5 83.3

70%

500 ∼ 1 500 23.6 23.2 23.1 23.4 23.3 99.4 99.4 99.4 99.3 99.3
1 000 ∼ 2 000 32.6 29.8 28.6 29.9 30.0 99.0 99.1 99.1 99.1 99.1
1 500 ∼ 2 500 176.3 120.7 101.1 111.2 112.1 91.2 94.4 95.6 94.7 95.0
2 000 ∼ 3 000 323.2 234.2 203.5 219.0 217.0 82.6 87.3 89.3 88.5 88.5

90%

500 ∼ 1 500 23.1 22.8 22.6 23.1 22.9 99.4 99.4 99.4 99.3 99.4
1 000 ∼ 2 000 30.3 27.9 26.7 27.4 27.3 99.0 99.2 99.2 99.2 99.2
1 500 ∼ 2 500 164.8 105.5 77.0 76.5 77.9 91.8 95.2 96.8 96.7 96.8
2 000 ∼ 3 000 311.5 192.0 161.6 154.5 157.8 83.2 90.0 91.9 92.2 91.9

TABLE II: Performance comparison of different agents with different traffic input settings. For each agent with each traffic setting, the
average Ttravel is calculated over all vehicles (including released and not released) of 50 simulated traffic episodes.

N

Fig. 7: Intersection of Tullastrasse and Hans-Bunte-Strasse in
Freiburg, Germany.
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Fig. 8: Box plot of travel times with different CAV rates over
all released vehicles in the simulation based on the real-world
intersection of Fig. 7. The whiskers extend 1.5 · IQR (interquartile
range) from the upper and lower quartiles.

E. Evaluation on Real-world Traffic Demand

To further evaluate CVTSC in more realistic traffic sit-
uations, we conduct additional tests with real-world traffic
demand recorded at an intersection in Freiburg, Germany,
which is sketched in Fig. 7. Unlike the intersection in Fig. 2a,
one part of the main road (Tullastrasse) forks before the
stop line. After adjusting the state representation and the

intersection structure in the simulator we trained two new
agents a3 and a5 and employ them in the test. The traffic
demand, listed in Table III, was manually recorded on October
19, 2017 by the traffic department of Freiburg. The total traffic
input was about 1 000 ∼ 1 500 v/h with roughly 20% on the
side road.

Fig. 8 shows box plots of the travel times of released vehi-
cles controlled by RS and CVTSC agents in traffic scenarios
with different CAV rates. The agent a3 is employed for 10%
and 30% automated traffic, while a5 is employed for the other
three. In all scenarios over 99.7% of all vehicles traverse
the intersection. Our method continuously improves the traffic
flow with increasing rate of CAVs in traffic. We notice that
the median of travel times in all scenarios stay similar, which
means the performance gain comes mainly from the vehicles
with long travel times on the side road. CVTSC agents manage
to release them faster without delaying the traffic on the main
road.

V. CONCLUSION

In this paper we present a novel approach to managing
mixed traffic at unsignalized intersections using deep rein-
forcement learning. Our proposed method CVTSC creates
courteous behavior for automated vehicles in order to op-
timize the overall traffic flow at intersections. Furthermore,
we introduce return scaling to counteract the imbalance of
cumulative rewards at different states and to stabilize training.
We validate the effectiveness of CVTSC using simulated and
real-world traffic data and show that CVTSC improves the
traffic performance continuously with increasing percentage
of automated vehicles. With more than 10% of automated
vehicles it also outperforms the state-of-the-art adaptive traffic
signal controller. Besides the performance gain, our method
does not require a change of the current driving habits of
humans. Moreover it is fault-tolerant, since the method is an
add-on to the existing traffic rules and thus the intersection will
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Direction Traffic Input (Number of Vehicles every 15min)

7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00

N-S 55 63 101 80 98 85 60 111 102 104 79 97 148 122 104 67
N-E 44 29 38 44 32 44 28 31 32 44 26 28 32 37 38 19
S-N 71 76 96 111 78 86 80 65 105 88 119 116 112 86 100 108
S-E 35 41 32 53 68 42 52 43 29 32 29 36 33 30 29 27
E-N 11 26 29 20 40 29 20 22 58 48 56 35 55 50 47 35
E-S 16 25 51 26 31 21 32 22 53 32 43 23 32 19 31 25

TABLE III: Traffic in rush hours on the morning and afternoon of October 19, 2017 at the intersection of Fig. 7.

still be fully functional even if the intersection management
unit fails. Last but not least, our method can be easily adopted
to different intersections.

In future work, we plan to investigate how much the
uncertainty of the input states can decrease the performance
and how to mitigate this influence. Furthermore, we plan to
develop state encoders for variable numbers of vehicles in
single lanes, which can be directly used for a new intersection
to accelerate the training process, instead of training the
whole policy network from scratch. Finally, an exciting area
may be extending the centralized controller to a decentralized
environment, where no infrastructure for perception and deci-
sion making is available and the automated vehicles have to
communicate and decide whether to yield according to their
incomplete local information.
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[4] S. Yan, J. Zhang, D. Büscher, and W. Burgard, “Efficiency and
equity are both essential: A generalized traffic signal controller with
deep reinforcement learning,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp.
5526–5533. [Online]. Available: http://ais.informatik.uni-freiburg.de/
publications/papers/yan20iros.pdf

[5] M. Ferreira, R. Fernandes, H. Conceição, W. Viriyasitavat, and O. K.
Tonguz, “Self-organized traffic control,” in Proc. of the Seventh ACM
International Workshop on VehiculAr InterNETworking, ser. VANET
’10, New York, NY, USA, 2010, p. 85–90.

[6] T. Litman, “Autonomous vehicle implementation predictions: Implica-
tions for transport planning,” https://www.vtpi.org/avip.pdf, 2021, [On-
line; accessed 06-Mar-2021].

[7] E. Namazi, J. Li, and C. Lu, “Intelligent intersection management sys-
tems considering autonomous vehicles: A systematic literature review,”
IEEE Access, vol. 7, pp. 91 946–91 965, 2019.

[8] S. Ulbrich, S. Grossjohann, C. Appelt, K. Homeier, J. Rieken, and
M. Maurer, “Structuring cooperative behavior planning implementations
for automated driving,” in 2015 IEEE 18th International Conference on
Intelligent Transportation Systems. IEEE, 2015, pp. 2159–2165.

[9] C. Menéndez-Romero, M. Sezer, F. Winkler, C. Dornhege, and
W. Burgard, “Courtesy behavior for highly automated vehicles
on highway interchanges,” in IEEE Intelligent Vehicles Symposium
(IV), 2018, pp. 943–948. [Online]. Available: http://ais.informatik.
uni-freiburg.de/publications/papers/menendez18iv.pdf

[10] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wiessner,
“Microscopic traffic simulation using sumo,” in Proc. of the IEEE
International Conference on Intelligent Transportation Systems (ITSC),
2018, pp. 2575–2582.

[11] K. Dresner and P. Stone, “Multiagent traffic management: A reservation-
based intersection control mechanism,” in Autonomous Agents and
Multiagent Systems, International Joint Conference on, vol. 3. IEEE
Computer Society, 2004, pp. 530–537.

[12] ——, “Multiagent traffic management: An improved intersection control
mechanism,” in Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems, 2005, pp. 471–477.

[13] ——, “Sharing the road: Autonomous vehicles meet human drivers,”
in The 20th International Joint Conference on Artificial Intelligence,
January 2007, pp. 1263–68.

[14] ——, “A multiagent approach to autonomous intersection management,”
Journal of Artificial Intelligence Research, vol. 31, pp. 591–656, March
2008.

[15] T.-C. Au, S. Zhang, and P. Stone, “Autonomous intersection management
for semi-autonomous vehicles,” Handbook of transportation, pp. 88–
104, 2015.

[16] G. Sharon and P. Stone, “A protocol for mixed autonomous and
human-operated vehicles at intersections,” in International Conference
on Autonomous Agents and Multiagent Systems. Springer, 2017, pp.
151–167.

[17] P. Lin, J. Liu, P. J. Jin, and B. Ran, “Autonomous vehicle-intersection
coordination method in a connected vehicle environment,” IEEE Intelli-
gent Transportation Systems Magazine, vol. 9, no. 4, pp. 37–47, 2017.

[18] L. C. Bento, R. Parafita, S. Santos, and U. Nunes, “Intelligent traffic
management at intersections: Legacy mode for vehicles not equipped
with v2v and v2i communications,” in Proc. of the IEEE International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2013,
pp. 726–731.

[19] Y. Meng, L. Li, F.-Y. Wang, K. Li, and Z. Li, “Analysis of cooperative
driving strategies for nonsignalized intersections,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 4, pp. 2900–2911, 2017.

[20] X. Qian, J. Gregoire, F. Moutarde, and A. De La Fortelle, “Priority-
based coordination of autonomous and legacy vehicles at intersection,” in
Proc. of the IEEE International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2014, pp. 1166–1171.

[21] S. A. Fayazi and A. Vahidi, “Mixed-integer linear programming for
optimal scheduling of autonomous vehicle intersection crossing,” IEEE
Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 287–299, 2018.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[24] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proc. of the International Conference on Learning Representations
(ICLR), 2016.

https://mutcd.fhwa.dot.gov/pdfs/2009r1r2/pdf_index.htm
http://ais.informatik.uni-freiburg.de/publications/papers/yan20iros.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/yan20iros.pdf
https://www.vtpi.org/avip.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/menendez18iv.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/menendez18iv.pdf

	Introduction
	Related Work
	Methods
	Background
	Action Space
	State Space
	Reward Function
	Return Scaling

	Experiments
	Experimental Setup
	Training Setup
	Evaluation during Training
	Evaluation on Simulated Traffic Demand
	Performance of Intersection
	Performance of Vehicle Groups
	Comparison of Agents

	Evaluation on Real-world Traffic Demand

	Conclusion
	References

