
Learning Continuous Control with Geometric Regularity
from Robot Intrinsic Symmetry

Shengchao Yan1, Baohe Zhang1, Yuan Zhang1, Joschka Boedecker1, Wolfram Burgard2

Abstract— Geometric regularity, which leverages data sym-
metry, has been successfully incorporated into deep learning
architectures such as CNNs, RNNs, GNNs, and Transform-
ers. While this concept has been widely applied in robotics
to address the curse of dimensionality when learning from
high-dimensional data, the inherent reflectional and rotational
symmetry of robot structures has not been adequately explored.
Drawing inspiration from cooperative multi-agent reinforce-
ment learning, we introduce novel network structures for single-
agent control learning that explicitly capture these symmetries.
Moreover, we investigate the relationship between the geometric
prior and the concept of Parameter Sharing in multi-agent
reinforcement learning. Last but not the least, we implement the
proposed framework in online and offline learning methods to
demonstrate its ease of use. Through experiments conducted on
various challenging continuous control tasks on simulators and
real robots, we highlight the significant potential of the proposed
geometric regularity in enhancing robot learning capabilities.

I. INTRODUCTION

Robots have the ability to undertake tasks that are danger-
ous or difficult for humans. With more degrees of freedom,
they can perform increasingly complex tasks. For example,
humanoid robots and quadrupedal robots can walk over
challenging terrain, while robot arms and hands can achieve
dexterous manipulation. However, controlling robots with a
large number of degrees of freedom becomes increasingly
difficult as the observation and action space grows expo-
nentially. Although deep reinforcement learning has been
employed to solve various robot control problems [1], [2],
[3], [4], learning effective control strategies for these robots
remains a challenging task.

Training neural networks on high-dimensional data is
known to be challenging due to the curse of dimensional-
ity [5]. To overcome this challenge, researchers have devel-
oped network architectures and incorporated various induc-
tive biases that respect the structure and symmetries of the
corresponding domains. For example, convolutional neural
networks (CNNs) leverage the strong geometric prior of
images by incorporating translation and rotation equivariance
into the design of convolutional layers. This ensures that
the extracted features move along with the original image,
regardless of the direction it is shifted in. Similarly, graph
neural networks (GNNs) take advantage of the geometric
prior of permutation invariance in other domains to cap-
ture the relationships among objects. Overall, incorporating
domain-specific inductive biases and symmetries can greatly

The authors are with the 1Department of Computer Science, University
of Freiburg, Germany, and the 2Department of Engineering, University of
Technology Nuremberg, Germany.

Fig. 1: Tasks challenging for current deep reinforcement
learning baseline algorithms.

improve the ability of neural networks to learn from high-
dimensional data.

However, in the realm of robot learning research, the
potential benefits of exploiting symmetry structures present
in environments, such as reflectional and rotational symme-
try, remain largely unexplored. Therefore, how to combine
this prior knowledge to effectively improve the existing
approaches still is worth to be investigated. To bridge the
research gap, we propose to reformulate the control prob-
lems using a Multi-Agent Reinforcement Learning (MARL)
framework to better leverage the symmetry structures.

Specifically, we introduce the Multi-Agent with Symmetry
Augmentation network structure (MASA), an architecture
for designing control policies or value functions which
leverage the transformation equivariance or invariance of
the corresponding symmetric robot structure. Instead of
learning policy and critic functions in the joint action space
composed of all actuators in a robot, we divide the robot into
several symmetric components and learn a policy for each of
them. The critic function maps observations with or without
actions from all agents to a centralized value. Additionally,
we establish a connection between our proposed geometric
prior and the important concept of “Parameter Sharing” in
MARL, which drastically reduces the optimization space
and speeds up the learning process. We demonstrate the
surprising effectiveness of our approach by combining the
new architecture with both online and offline model-free
deep learning methods. We evaluate the proposed method
on a set of challenging robot control tasks (see Fig. 1).
The experimental results demonstrate that our method sig-
nificantly improves the performance and data efficiency of
robot control learning tasks.

ar
X

iv
:2

30
6.

16
31

6v
2

 [
cs

.R
O

]
 1

8
M

ar
 2

02
4

II. BACKGROUND AND RELATED WORK

A. Multi-Agent Reinforcement Learning (MARL)

MARL is an extended reinforcement learning method
for decision-making problems, where multiple agents can
interact and learn in one environment simultaneously.
The common mathematical framework for MARL prob-
lems is Markov games. A Markov game is a tuple
⟨N ,S,O,A, P,Ri, γ⟩. N is the set of all agents and S
is the set of states. Oi and Ai are observation space and
action space for agent i, while O = ×i∈NOi and A =
×i∈NAi represent joint observation space and joint action
space. Define ∆S and ∆A be the probability measure on
S and A respectively. Then P is the transition probability
P (s′|s, a) : S × A → ∆S . Each agent i maintains an
individual reward function Ri(s, a) : S × A → R, and
the future rewards are discounted by the discount factor
γ ∈ [0, 1]. Let Πi = {πi(ai|oi) : Oi → ∆Ai

} be the policy
space for agent i, then the objective for agent i is represented
as maxπi

Eπ,P

[∑+∞
t=0 γ

tRi(st, at)
]
. In practice, the state

space and the observation space can be identical if the
observation has already fully described the system. Our paper
also follows this assumption and uses observation alone.

Multi-Agent Mujoco [6] is a popular benchmark for
MARL algorithms which divides a single robot into several
distinct parts with separate action space. However, the state-
of-the-art MARL algorithms still couldn’t match the perfor-
mance of the single-agent algorithms on this benchmark.
Different from their work, in which they arbitrarily divide
robots into parts and ignore the geometric structures of the
robots, we leverage ideas from geometric regularity during
the MARL training and our results show that MARL can
outperform single-agent algorithms by a substantial margin.

B. Symmetry in Robot Learning

In the robot learning domain, two groups of symmetric
structures have been used to improve performance and
learning efficiency. 1) Extrinsic Symmetry: By extrinsic
symmetry we refer to the symmetries existing in the exte-
roceptive sensors of the robot such as camera input. Some
works [7], [8], [9], [10] have been proposed to integrate these
symmetries into system identification approaches with neural
networks, especially CNN-structured ones. These methods
can largely improve the performance for manipulation tasks,
but they are mostly used for manipulation tasks with image
input and grippers without roll-pitch movement. Learning
symmetry in the latent space directly from data [11] is still
limited to representation learning from images. 2) Intrinsic
Symmetry: Different from extrinsic symmetries, intrinsic
symmetries mostly naturally come from the physical con-
straints in the control system. For example, a humanoid robot
control task exhibits reflectional symmetry. A symmetric
control policy on such robot is usually more natural and
effective. A data-augmentation method [12] is proposed to
improve reinforcement learning methods for rotation in-
variant locomotion. To directly incorporate symmetry in
the policy, it is also proposed to numerically construct

(a) Reflectional symmetry (b) Rotational symmetry

Fig. 2: Agent partitioning considering symmetry struc-
tures: Humanoid and Cheetah robots split into left and right
parts by reflectional symmetry; TriFinger and Ant robots
split into three and four parts by rotational symmetry, where
each part is controlled individually by a dedicated agent. The
central part (grey) is controlled by all agents.

equivariant network layers [13], [14]. However, additional
calculation is required to design the network even if the do-
main specific transformation is given, leading to a relatively
complex procedure. Moreover, the policy network of [13]
only considers a pole balancing task with discrete action and
[14] has no experiments on robot control policy learning.
Researchers investigate four different methods to encourage
symmetric motion of bipedal simulated robots [15]. They are
implemented via specific policy network, data augmentation
or auxiliary loss function. Even though the robots’ motions
become natural-looking, they do not show a major improve-
ment on different tasks. The policy network method in [15]
is similar to ours. But instead of a specific network merely
for locomotion tasks with reflectional symmetry, we propose
a generic equivariant policy network for both reflectional and
rotational symmetries, the predominant symmetry features in
robotic systems and animal biology. Moreover, we approach
the control task from the viewpoint of multi-agent systems.
Finally, we achieve substantial performance improvements in
our experiments by reducing the policy search space.

III. SINGLE ROBOT CONTROL AS MARL
Instead of learning a single-agent policy to control the

whole robot, which will lead to a large observation-action
space that is difficult to optimize, we introduce multiple
agents that are responsible for each individual component
of the robot inspired by MARL. We further propose a
framework driven by the presence of symmetry structures
in many robots and exploit such inductive biases to facilitate
the training by applying parameter sharing techniques.

Our method consists of (1) identifying the geometric
structures of different robots and dividing single robots into
multiple parts accordingly; (2) reformulating the control
problem under a MARL framework; (3) optimizing policies
with Parameter Sharing.

A. Dividing Single Robots into Multiple Parts

Previous research [6] divides a single robot into multiple
parts to evaluate the performance of MARL methods. How-
ever, its irregular partitioning makes it hard for multi-agent
methods to compete with the single-agent methods. In this
paper, we instead take advantage of the symmetry structures
of robots.

(a) Symmetric states of TriFinger. (b) Policy network (c) Critic network

Fig. 3: a) TriFinger robot moves an object towards a target position. The black coordinate system is the global system, while
the colored ones are local systems. The red arrow represents the desired moving direction of the manipulated object. Note
that the actions of different body parts should be equivariant with regard to the rotations. b) Equivariant policy network with
parameter Φ. c and s stand for central and symmetric actions. c) Invariant critic network with parameter Ψ,Θ.

As shown in Fig. 2a, robots with reflectional symmetry
can be partitioned into left (blue), right (green) and a
central part (grey). The robots with rotational symmetry in
Fig. 2b are partitioned into parts with the same number
of symmetric limbs (colour) and a central part (grey). For
a robot with any of these symmetric structures, we split
the whole robot’s original observation-action space O × A
by O = Oc ×

∏
i∈N Os,i and A = Ac ×

∏
i∈N As,i.

Oc represents the central observation space, which consists
of measurements that do not have symmetric counterparts,
such as the position, orientation, velocity and joints of the
torso, target direction, or states of the manipulated objects.
Raw sensor data such as images and point clouds may also
belong to central observation. Os,i corresponds to symmetric
observation spaces, whose measurements may include joint
positions and velocities from the limbs, contact sensor mea-
surements of the feet or fingers, and so on. The symmetric
observation spaces are the same for any i ∈ N due to
the robots’ symmetric property. Ac and As,i are the action
spaces for central (e.g., humanoid robot’s pelvis and twist)
and symmetric (e.g., limbs) robot parts.

B. Multi-Agent Reinforcement Learning Formulation

Assume the original observation and action of the whole
robot be o ∈ O and a ∈ A respectively and the number
of agents |N |, equal to the number of symmetry parts
of the robots. For each agent i ∈ N , there is a unique
transformation function Ti ∈ T to obtain its own observation
oi = Ti(o), where T is a set of symmetry transformation
functions for observations or actions defined by the corre-
sponding symmetric structure. We describe the transforma-
tion functions later in this section. Each agent generates the
local action ai, consisting of ac,i ∈ Ac and as,i ∈ As,i for
central and symmetric actions, by its own policy network.
Finally, the whole robot’s action a is recovered by gathering
all symmetric actions as,i and merging all central actions
ac,i into ac. Regarding the reward function, our formulation
follows the cooperative MARL setup, where Ri for all
i ∈ N are identical at every time step. This shared reward is
calculated by a task-related reward function R(o, a) which
depends on the whole robot’s observation and action.

We take the TriFinger robot in Fig. 3a as an example to

explain the transformation set T for rotational symmetry.
First, we define a local coordinate system for each of the
three agents, with the origin at the center of the robot base,
z axis along the robot symmetry axis and x axis pointing to
the base joint of the corresponding limb. Then, we arbitrarily
select an agent as the base agent. Here we take the yellow
one. The coordinate system of the base agent is used as
the global system and the robot observation o should be
converted into it, resulting in T0 as identity transformation
for the base agent. We further describe the transformation
function of other agents. Different observation components
are categorized into different groups by o = [oinv, ov], where
oinv stands for quantities invariant under the symmetry
transformation, such as robot id or the delay of control
systems, and ov for the variant ones. The basic idea of the
transformation of agent i is to rotate the whole environment
so that its local coordinate system overlaps with the global
system. As a result of the rotation, coordinate-system-
irrelevant quantities of the three fingers shift circularly,
and other variant values are changed by the rotation
transformation. The same rules apply for the action space
transformation due to the symmetric robot structure. Note
that some observation quantities have to be both shifted
and transformed, such as the fingertip position. Given the
observation o = [tdelay,α0,α1,α2, pobject], the symmetric
observation of agent i can be calculated by Ti(o) =
[tdelay,αi,α(i+1) mod 3,α(i+2) mod 3,Ri(pobject)],
where tdelay is the control delay, αi is the joints angle
position of finger i, pobject is the object position, and Ri is
the corresponding rotation. The transformation function for
reflectional symmetry is defined in a similar way. The only
difference is that the local coordinate systems are reflected
to overlap with the global system instead of being rotated.

We apply our method to both online and offline learning
algorithms. To optimize the policies with interaction with the
environment, we adopt the multi-agent version of Proximal
Policy Optimization (PPO) [16] methods. PPO is a popu-
lar model-free actor-critic reinforcement learning algorithm
in different domains [2], [4], [17] for its stability, good
performance and ease of implementation. Its multi-agent
version also achieves competitive performance on different
MARL benchmarks [18], [19]. For offline settings where the

agent learns from fixed dataset without interacting with the
environment, we implement the proposed framework with
Behavior Cloning (BC) and Implicit Q-Learning (IQL) [20],
a state-of-the-art offline reinforcement learning algorithm.

C. Geometric Regularization
Parameter Sharing has been considered as a crucial el-

ement in MARL for efficient training [21]. By enabling
agents to share parameters in their policy networks, pa-
rameter sharing not only facilitates scalability to a large
number of agents but also enables agents to leverage shared
learned representations, leading to reduced training time and
improved overall performance. However, it is revealed that
indiscriminately applying parameter sharing could hurt the
learning process [22]. Successful parameter sharing relies on
the presence of homogeneous agents as a vital requirement.
In other words, agents should execute the same action if
they are given the same observation. For our method, this is
realized by the symmetry transformation.

Take the task in Fig. 3a as an example, where the manip-
ulator with three symmetrically aligned fingers has to move
the sphere towards a target position. If the whole system
is rotated by 120◦ or 240◦ around the z axis of the robot
base, under the optimal policy, the actions should also shift
circularly among the three fingers. Given the whole robot’s
observation o, this relationship can be denoted by:

As,j(Ti(o)) = As,i(Tj(o)), Ac(Ti(o)) = Ti(Ac(o)) (1)

where As,j is the symmetric action of the j-th agent, Ac
is the central action, which exists for Humanoid robot, Ti

is the symmetry transformation of agent i. Note that the
corresponding robot parts of agents can be defined arbitrarily.
It does not influence the equivariance/invariance. Regarding
the value function V : O → R in RL algorithms, it possesses
the invariance: V (Ti(o)) = V (Tj(o)),∀i, j ∈ N , which also
holds for the Q function Q : O ×A → R.

Based on Eq. 1, we design the multi-agent policy and critic
network structures in Fig. 3b, 3c. Agent i gets a transformed
observation Ti(o) as the input of the policy network, the
output action value consists of ac,i and as,i. The central joints
are controlled by the mean action over all agents’ output ac,i,
while as,i will be used as the action to take for the robot part
i. The policy network parameters are shared among agents.
The critic network gets the observations with or without
actions from all agents as input. The input first goes through
the shared feature learning layers in the value network. Then
the latent features are merged by a set operator mean. The
critic value is finally calculated with the merged feature.

The proposed policy network is equivariant with respect
to symmetric transformations we consider in this work,
while the critic network is an invariant function. By sharing
the parameters Φ and Ψ among all agents, we are able
to incorporate the geometric regularization and reduce the
dimension of the observation-action space.

Proof of the network equivariance/invariance. At the begin-
ning we summarize the properties of the symmetry transfor-
mations in this work. They are:

• commutative: Tj(Ti(o)) = Ti+j(o) = Ti(Tj(o))
• distributive: Tj(Ti(o)+Tk(o)) = Tj(Ti(o))+Tj(Tk(o))
• cyclic: Ti(o) = Ti+|N |(o)

The equivariance of the policy for symmetric actions in Eq. 1
is proved as follows:

As,j(Ti(o)) = Φs(Tj+i(o)) = As,i(Tj(o))

The equivariance for the central action is proved as follows:

Ac(Ti(o)) =
1

|N |

|N |−1∑
j=0

T|N |−1−j(Φc(Tj(Ti(o))))

=
1

|N |

2|N |−i−1∑
j=|N |−i

T|N |−1−j(Φc(Ti+j(o)))

=
1

|N |

2|N |−1∑
k=|N |

T|N |+i−1−k(Φc(Tk(o)))

=
1

|N |

|N |−1∑
k=0

Ti(T|N |−1−k(Φc(Tk(o))))

=Ti(
1

|N |

|N |−1∑
k=0

T|N |−1−k(Φc(Tk(o))))

=Ti(Ac(o))

The invariance of the value network is proved as follows:

V (Ti(o)) =Θ(
1

|N |

|N |−1∑
j=0

Ψ(Tj(Ti(o))))

=Θ(
1

|N |

2|N |−i−1∑
j=|N |−i

Ψ(Ti+j(o)))

=Θ(
1

|N |

|N |−1∑
k=0

Ψ(Tk(o))) = V (o) = V (Tj(o))

The invariance of the Q network can be proved in the same
way with action a concatenated to the observation o. ■

IV. EXPERIMENTS

We evaluate our method in different tasks to clarify the
following concerns: 1) Does the multi-agent framework
incorporated with robots’ intrinsic symmetry improve the
performance and data-efficiency on robot learning tasks? 2)
Can different learning paradigms benefit from this frame-
work? 3) Is the proposed method applicable also to real-
world problems?

A. Experiments with Online Reinforcement Learning

Previous robotic control benchmarks [23] evaluate algo-
rithms on fundamental tasks, such as controlling agents to
walk. The movements in these tasks are limited and it’s
relatively easy to learn a good policy. In this work, we
adopt several more challenging robotic control tasks, where
it is difficult for current state-of-the-art online algorithms to
achieve good performance. The tasks are shown in Fig. 1:

0.0 0.5 1.0
Timesteps 1e9

0

500

1000

1500
Ep

iso
de

 R
et

ur
ns

SA
SASA
MA
MASA

(a) Humanoid Dribbling

0.0 0.5 1.0
Timesteps 1e9

0

2000

4000

(b) Humanoid Tightrope

0.0 2.5 5.0 7.5
Timesteps 1e8

0

1000

2000

(c) A1 Beam

0 1 2
Timesteps 1e9

2000

4000

6000

(d) TriFinger Lift

0 1 2 3
Timesteps 1e8

0

200

400

600

(e) Ant Acrobatic

Fig. 4: Learning curves on robot control tasks. The x-axis is environment time steps and the y-axis is episodic returns during
training. All graphs are plotted with median and 25%-75% percentile shading across five random seeds.

Humanoid Tightrope: The agent learns to control a
humanoid robot to walk on a tightrope. The robot has
21 controllable motors. The tightrope is extremely narrow
with a diameter of only 10 cm.
Humanoid Dribbling: The humanoid robot learns to
dribble along routes with changing direction. Compared
with the tightrope task, the observation space is augmented
with features of the ball.
A1 Beam: The agent controls the quadruped robot Unitree
A1 [24] to walk on a balance beam with width of 10 cm
following a predefined speed. Considering the width of A1
and the balance beam, it is much harder than walking on
the ground.
TriFinger Lift: TriFinger [25] is a 3-finger manipulator
for learning dexterity. The goal is to move a cube from
a random initial pose to an arbitrary 6-DoF target pose.
The environment is the same as that in IssacGymEnvs [4],
except that we remove the auxiliary penalty for finger
movement to increase the difficulty of the task.
Ant Acrobatic: The ant robot learns to do complex
acrobatics (e.g., heading a pole) on a ball, which extremely
challenges the ability of agents to maintain balance.

All experiments are carried out based on the NVIDIA Isaac
Gym [26] robotics simulator.

1) Baselines: For each task, we compare our method,
named as Multi-Agent with Symmetry Augmentation
(MASA), with three baselines. The first baseline is Single-
Agent (SA), which treats the robot as a single agent and
optimizes policy for the joint action space. This baseline can
provide an intuitive comparison of our proposed framework
to previous classic reinforcement learning works. The state
space is kept the same as MASA’s for a fair comparison. The
second baseline is Single-Agent with Symmetry Augmenta-
tion (SASA). It follows the SA’s setup and is augmented with
a symmetry loss [15]. Specifically, for any received observa-
tion o, we calculate its symmetric representation Ti(o). We
regulate the policy function π and the value function V in
PPO with extra symmetry losses by minimizing ∥Ti(A(o))−
A(Ti(o))∥2 and |V (o) − V (Ti(o))|, where A and V are
the gathered action and critic value of the agent. The third
baseline is Multi-Agent without Symmetry Augmentation
(MA). It uses the same architecture with parameter sharing
as MASA. However, it does not involve the transformations
in Fig. 3b 3c. Thus the geometric regularity of symmetry is
ignored, which follows the previous research [6]. We con-

catenate a one-hot id encoding to each agent’s observation
as a common operation for non-homogeneous agents.

2) Results: Figure 4 presents the average return of all
methods on different tasks during training. The proposed
method MASA significantly outperforms other baselines
across all 5 tasks. Further, the advantages over other base-
lines rise with the increasing difficulties of the task, which
can be indicated by the increased number of joints, the
extended state dimension and the enlarged state space in the
task. Humanoid Tightrope and Humanoid Football control
the same robot. However, in the tightrope task, the robot
only needs to walk forward, while the football task involves
random turns and manipulating an external object, so that
other baselines can hardly learn meaningful behaviours.

By comparing the results of MASA, MA and SASA, we
could observe that both of the two factors in MASA, multi-
agent framework and symmetry structure, play an important
role. Utilizing symmetry data structure alone (SASA) can
gradually learn to solve a few tasks but with apparently lower
data efficiency. Because the optimization space is not reduced
and thus larger than that of MASA method. The multi-agent
structure itself (MA) cannot guarantee meaningful results at
all, which follows the criticism of naively sharing parameters
among non-homogeneous agents [22].

In the Humanoid Dribbling task, MASA initially under-
performs compared to other methods. This is because the
baselines prioritize self-preservation and struggle to find a
policy that balances dribbling and staying alive. By focusing
on avoiding falling down and kicking the ball too far away,
they learn to stand still near the ball while disregarding the
rewards associated with ball movement. Consequently, the
baseline agents survive longer at the beginning, resulting in
higher returns compared to MASA.

B. Experiments with Offline Reinforcement Learning

Although reinforcement learning enables agent to learn
from interactions with the environment, collecting samples
during training could be inefficient or unsafe [27]. Offline
learning solves this problem by learning from fixed dataset.
To demonstrate our method’s generalizability, we also ap-
plied it to behavior cloning and implicit Q-learning, and
evaluate it on both a simulator and real robots.

1) System Setup: The work [28] publishes large diverse
datasets collected on a Pybullet simulator and a real robot
cluster for benchmarking offline reinforcement learning al-
gorithms. The simulator is provided and the robot cluster

Datasets data BC IQL

SA SASA-data MASA SA SASA-data MASA

Sim-Expert 0.87 0.64± 0.00 0.29± 0.13 0.71± 0.05 0.47± 0.06 0.37± 0.13 0.84± 0.02
Sim-Half-Expert 0.88 0.64± 0.02 0.37± 0.08 0.75± 0.05 0.04± 0.01 0.10± 0.05 0.78± 0.06
Sim-Weak&Expert 0.5 0.16± 0.04 0.10± 0.05 0.34± 0.07 0.24± 0.05 0.20± 0.07 0.55± 0.04
Sim-Mixed 0.68 0.01± 0.01 0.01± 0.01 0.23± 0.10 0.00± 0.00 0.03± 0.02 0.48± 0.09

Real-Expert 0.66 0.27± 0.09 0.13± 0.15 0.52± 0.18 0.29± 0.09 0.16± 0.18 0.61± 0.18
Real-Half-Expert 0.68 0.15± 0.01 0.13± 0.14 0.41± 0.25 0.12± 0.06 0.11± 0.13 0.61± 0.19
Real-Weak&Expert 0.40 0.02± 0.04 0.05± 0.09 0.26± 0.20 0.11± 0.13 0.17± 0.14 0.30± 0.24
Real-Mixed 0.42 0.00± 0.01 0.04± 0.09 0.06± 0.08 0.03± 0.02 0.03± 0.08 0.22± 0.15

TABLE I: Success rate on the TriFinger-Lift datasets. Average and standard deviation over five training seeds. ‘data’ denotes
the mean over the dataset.

can be accessed remotely for evaluating learned policies. We
choose the more complex task Lift in the dataset to show
the potential of our method. The task is basically the same
as TriFinger Lift described in Sec. IV-A.

2) Baselines: We evaluate MASA against two baselines:
SA and SASA-data. The first baseline is the original offline
algorithm treating the robot as a single agent and learn
policies for the joint action space. The SASA-data baseline is
different from SASA in Sec. IV-A, which add auxiliary loss
functions to the policy and critic learning. It first augments
the offline dataset with symmetric transitions

(
Ti(o),Ti(a)

)
.

Then an agent is trained with SA method on the larger
dataset. We do not benchmark against the naive multi-agent
method MA due to its poor performance shown in Sec. IV-A.

3) Evaluation: The evaluation results for the TriFinger
Lift task on both simulator and real-robots are summarized
in Table I. The values for SA come from the benchmark
paper [28]. To keep fairness, we use the default hyperparam-
eters for training all policies. The evaluation process are also
kept unchanged. The policies trained on simulation datasets
are evaluated in the corresponding simulator. 100 episodes
are carried out for each seed and algorithm. Those trained on
real-robot datasets are evaluated with the real-robot cluster.
We run 6 episodes for each seed and algorithm. The final
success rate values are averaged across five training seeds,
which are also the same as those in the benchmark paper.

Our method outperforms the baselines over all datasets
with a significant margin without any hyperparameter fine-
tuning. For more than half of the datasets, the MASA agents
achieve success rates close to or even better than that of the
data collection policy. We observe two interesting results: I)
The relative performance gain of MASA on most real-robot
datasets is higher than that on simulation datasets. This can
be explained as a result of the enhanced domain random-
ization with MASA. The robot in simulator is perfect and
requires no domain randomization. The real robots, however,
have different characteristics for different robots and fingers.
Assuming k different robots are in the dataset, a MASA
agent learns the experience from 3 × k fingers due to the
shared policy. II) The SASA-data agents underperform the
SA agents. We think the performance drop is caused by am-
biguous regression targets introduced by data augmentation.
Given two samples (o, a) and (o′, a′) in the original dataset,

where o′ ≈ T1(o), a
′ ̸= T1(a), the resulting augmented data

elements would be (o, a),
(
T1(o),T1(a)

)
,
(
T2(o),T2(a)

)
and

(
o,T2(a

′)
)
,
(
T1(o), a

′), (T2(o),T1(a
′)
)
, which means

different actions for similar observations. Since the data
collection policy is not trained with a symmetric policy,
such multi-modality in control sequences can be introduced
by symmetric transformation. As a result, BC agents tend
to learn out-of-distribution actions with such ambiguous
regression targets. This problem is less severe for offline rein-
forcement learning algorithms like IQL, because they often
are equipped with regularizers to avoid out-of-distribution
actions.

V. CONCLUSION AND LIMITATIONS

This paper introduced a novel approach that incorporates
the robot’s intrinsic symmetry into an agent’s policy and
critic networks. Through our unique network architecture,
MASA, we demonstrated remarkable success in learning
robot control tasks, integrating our method with PPO, BC,
and IQL from different learning paradigms. Despite the
imperfections and variances in real-world robots due to
mounting and manufacturing tolerances, our approach still
enhances learning algorithms, even leveraging these imper-
fections to its advantage. Although the implementation of our
method necessitates specific domain knowledge, such as un-
derstanding the robot structure and the transformation oper-
ations, it provides a significant contribution to robot learning
in complex tasks. Furthermore, MASA serves as a valuable
blueprint for developing robots with increased degrees of
freedom, all the while keeping the complexity of observation-
action space manageable. Future work offers promising
avenues, including the exploration of additional symmetric
structures and the automation of identifying robots’ intrinsic
symmetries. The question how varying degrees of symmetry
imperfection affect our method’s performance is also an
interesting aspect for future work.

ACKNOWLEDGEMENT

We extend our gratitude to the Max Planck Institute for
Intelligent Systems in Tübingen, Germany, for providing
the TriFinger robots, encompassing software, hardware, and
datasets. Special thanks to Nico Gürtler, whose support
and invaluable discussions significantly contributed to our
experiments.

REFERENCES

[1] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” in Proc. of the International Conference on Learning
Representations (ICLR), 2016.

[2] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, 2022.

[3] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg,
“Daydreamer: World models for physical robot learning,” in Proc. of
Conference on Robot Learning (CoRL), 2023, pp. 2226–2240.

[4] A. Allshire, M. MittaI, V. Lodaya, V. Makoviychuk, D. Makoviichuk,
F. Widmaier, M. Wüthrich, S. Bauer, A. Handa, and A. Garg, “Trans-
ferring dexterous manipulation from gpu simulation to a remote real-
world trifinger,” in Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022, pp. 11 802–11 809.

[5] M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic, “Geometric
deep learning: Grids, groups, graphs, geodesics, and gauges,” CoRR,
vol. abs/2104.13478, 2021.

[6] B. Peng, T. Rashid, C. Schroeder de Witt, P.-A. Kamienny, P. Torr,
W. Böhmer, and S. Whiteson, “Facmac: Factored multi-agent cen-
tralised policy gradients,” in Proc. of the Conference on Neural
Information Processing Systems (NeurIPS), vol. 34, 2021, pp. 12 208–
12 221.

[7] D. Wang, M. Jia, X. Zhu, R. Walters, and R. Platt, “On-robot learning
with equivariant models,” in Proc. of Conference on Robot Learning
(CoRL), 2022.

[8] X. Zhu, D. Wang, O. Biza, G. Su, R. Walters, and R. Platt, “Sample ef-
ficient grasp learning using equivariant models,” in Proc. of Robotics:
Science and Systems (RSS), 2022.

[9] D. Wang and R. Walters, “So (2) equivariant reinforcement learning,”
in Proc. of the International Conference on Learning Representations
(ICLR), 2022.

[10] D. Wang, R. Walters, X. Zhu, and R. Platt, “Equivariant q learning
in spatial action spaces,” in Proc. of Conference on Robot Learning
(CoRL), 2022, pp. 1713–1723.

[11] A. K. Mondal, V. Jain, K. Siddiqi, and S. Ravanbakhsh, “Eqr:
Equivariant representations for data-efficient reinforcement learning,”
in Proc. of the International Conference on Machine Learning (ICML),
2022.

[12] A. Mavalankar, “Goal-conditioned batch reinforcement learning for
rotation invariant locomotion,” CoRR, vol. abs/2004.08356, 2020.

[13] E. Van der Pol, D. Worrall, H. van Hoof, F. Oliehoek, and M. Welling,
“Mdp homomorphic networks: Group symmetries in reinforcement
learning,” in Proc. of the Conference on Neural Information Processing
Systems (NeurIPS), 2020, pp. 4199–4210.

[14] D. F. O. Apraez, M. Martı́n, A. Agudo, and F. Moreno, “On discrete
symmetries of robotics systems: A group-theoretic and data-driven
analysis,” in Proc. of Robotics: Science and Systems (RSS), 2023.

[15] F. Abdolhosseini, H. Y. Ling, Z. Xie, X. B. Peng, and M. Van
De Panne, “On learning symmetric locomotion,” in Proc. of Motion,
Interaction and Games, 2019.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017.

[17] S. Yan, T. Welschehold, D. Büscher, and W. Burgard, “Courteous
behavior of automated vehicles at unsignalized intersections via re-
inforcement learning,” IEEE Robotics and Automation Letters, vol. 7,
no. 1, pp. 191–198, 2021.

[18] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and
Y. Wu, “The surprising effectiveness of ppo in cooperative multi-agent
games,” in Proc. of the Conference on Neural Information Processing
Systems (NeurIPS), vol. 35, 2022, pp. 24 611–24 624.

[19] C. S. de Witt, T. Gupta, D. Makoviichuk, V. Makoviychuk, P. H. S.
Torr, M. Sun, and S. Whiteson, “Is independent learning all you need
in the starcraft multi-agent challenge?” CoRR, vol. abs/2011.09533,
2020.

[20] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit q-learning,” in Proc. of the International Conference on
Learning Representations (ICLR), 2022.

[21] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-
agent control using deep reinforcement learning,” in Proc. of Au-
tonomous Agents and Multiagent Systems: Workshops, 2017, pp. 66–
83.

[22] F. Christianos, G. Papoudakis, M. A. Rahman, and S. V. Albrecht,
“Scaling multi-agent reinforcement learning with selective parameter
sharing,” in Proc. of the International Conference on Machine Learn-
ing (ICML), 2021.

[23] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel,
T. Erez, T. Lillicrap, N. Heess, and Y. Tassa, “dm control: Software
and tasks for continuous control,” Software Impacts, vol. 6, p. 100022,
2020.

[24] U. A1, “Unitree. a1: More dexterity, more posibility, 2018,”
https://www.unitree.com/a1/, Jan. 2018.

[25] M. Wuthrich, F. Widmaier, F. Grimminger, S. Joshi, V. Agrawal,
B. Hammoud, M. Khadiv, M. Bogdanovic, V. Berenz, J. Viereck,
M. Naveau, L. Righetti, B. Schölkopf, and S. Bauer, “Trifinger: An
open-source robot for learning dexterity,” in Proc. of Conference on
Robot Learning (CoRL), J. Kober, F. Ramos, and C. J. Tomlin, Eds.,
vol. 155, 2020, pp. 1871–1882.

[26] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac
gym: High performance GPU based physics simulation for robot
learning,” in Proc. of the Conference on Neural Information Processing
Systems (NeurIPS), 2021.

[27] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru,
S. Gowal, and T. Hester, “An empirical investigation of the challenges
of real-world reinforcement learning,” CoRR, vol. abs/2003.11881,
2020.

[28] N. Gürtler, S. Blaes, P. Kolev, F. Widmaier, M. Wuthrich, S. Bauer,
B. Schölkopf, and G. Martius, “Benchmarking offline reinforcement
learning on real-robot hardware,” in Proc. of the International Con-
ference on Learning Representations (ICLR), 2023.

APPENDIX

A. Extra Experimental Setups

1) Hyperparameters: Each baseline is run with 5 random
seeds. All experiments are carried out on GPU card NVIDIA
rtxA6000 and rtx3080 GPU. The hyperparameters of all
baselines are consistent for a fair comparison. The detailed
values can be accessed in Table II.

2) Tasks Details:
a) Humanoid Tightrope: In this task, the agent learns

to control a humanoid robot to walk on a tightrope. The
humanoid robot has 21 controllable motors. The tightrope
is extremely narrow with a diameter of only 10 cm, which
challenges the efficiency of learning algorithms. The agent
is rewarded with a forward speed on the tightrope and a
proper posture. At each non-terminating step, the reward r =
wv × rv + walive × ralive + wup × rup + wheading × rheading +
waction × raction + wenergy × renergy + wlateral × rlateral, where

• rv is the robot’s forward velocity, wv = 1.0;
• ralive = 1, walive = 2.0;
• rup = 1 if eup,z > 0.93, where eup is the basis vector of

torso’s z axis in the global coordinate system, otherwise
the value is 0, wup = 0.1;

• rheading = eforward,x, where eforward is the basis vector of
torso’s x axis in global coordinate system, wforward =
0.1;

• raction = ∥a∥22, where a is joints action, waction = −0.01
• renergy is the joints power consumption, wenergy = −0.05
• rlateral = vtorso,y is the penalty for lateral velocity,
wlateral = −1.0

The reward is −1 for termination step. The action is the force
applied to all joints.

TABLE II: Hyperparameters of all experiments.

HYPERPARAMETERS HUMANOID TIGHTROPE HUMANOID FOOTBALL TRIFINGER MOVE A1 BEAM ANT ACROBATIC

BATCH SIZE 4096×32 4096×32 16384×16 4096×24 4096×16
MIXED PRECISION TRUE TRUE FALSE TRUE TRUE
NORMALIZE INPUT TRUE TRUE TRUE TRUE TRUE
NORMALIZE VALUE TRUE TRUE TRUE TRUE TRUE
VALUE BOOTSTRAP TRUE TRUE TRUE TRUE TRUE
NUM ACTORS 4096 4096 16384 4096 4096
NORMALIZE ADVANTAGE TRUE TRUE TRUE TRUE TRUE
GAMMA 0.99 0.99 0.99 0.99 0.99
TAU 0.95 0.95 0.95 0.95 0.95
E-CLIP 0.2 0.2 0.2 0.2 0.2
ENTROPY COEFFICIENT 0.0 0.0 0.0 0.0 0.0
LEARNING RATE 5.E-4 5.E-4 3.E-4 3.E-4 3.E-4
KL THRESHOLD 0.0008 0.0008 0.0008 0.0008 0.0008
TRUNCATED GRAD NORM 1.0 1.0 1.0 1.0 1.0
HORIZON LENGTH 32 32 16 24 16
MINIBATCH SIZE 32768 32768 16384 32768 32768
MINI EPOCHS 5 5 4 5 4
CRITIC COEFFICIENT 4.0 4.0 4.0 2.0 2.0
MAX EPOCH 10K 10K 10K 10K 5K
POLICY NETWORK [400,200,100] [400,200,100] [256,256,128,128] [256, 128, 64] [256, 128, 64]
CRITIC NETWORK [400,200,100] [400,200,100] [256,256,128,128] [256, 128, 64] [256, 128, 64]
ACTIVATION FUNCTION ELU ELU ELU ELU ELU

b) Humanoid Dribbling: In this task, the robot learns
to dribble along routes with random turns. The observation
space is augmented with features of the ball compared with
the tightrope task. For observation calculation, the global
coordinate system changes with the new target route at the
turning position. At each non-terminating step, the reward
r = wv×rv+walive×ralive+wdist×rdist+wheading×rheading+
waction × raction + wenergy × renergy + wlateral × rlateral, where

• rv is the ball’s forward velocity, wv = 2.0;
• ralive = 1, walive = 0.2;
• rdist = e−d where d is the 2d distance from torso to the

ball, wdist = 0.2;
• rheading = eforward,x, where eforward is the basis vector of

torso’s x axis in the global system, wforward = 1.0;
• raction, renergy are the same with Humanoid Tightrope
• rlateral = vball,y is the penalty for the ball’s lateral

velocity, wlateral = −0.5

The reward is −1 for termination step. The action is the force
applied to all joints.

c) A1 Beam: In this task, the agent controls the
quadruped robot Unitree A1 [24] to walk on a balance
beam with width of 10 cm following a predefined speed.
Considering the width of A1 and the balance beam, it is
much harder than walking on the ground. There are overall
12 motors for Unitree A1, 3 for each leg. At each non-
terminating step, the reward r = wv × rv + walive × ralive +
wheading × rheading + waction × raction + wlateral × rlateral, where

• rv = e−|vtorso,x−vtarget| is speed tracking reward, wv =
1.0;

• ralive = 1, walive = 1.0;
• rheading = eforward,x, where eforward is the basis vector of

torso’s x axis in global coordinate system, wforward =
1.0;

• raction = ∥a∥22, where a is the joints action, waction =

−0.5
• rlateral = vtorso,y is penalty for lateral velocity, wlateral =
−1.0

The reward is −1 for termination step. The robot has a low-
level joint controller. The action is the target angular position
of all joints.

d) Trifinger Lift: Trifinger [25] is a 3-finger manipula-
tor for learning dexterity. The goal of the task is to move
a cube from a random initial pose to an arbitrary 6-DoF
target position and orientation. The environment is the same
as that of [4], except that we remove the auxiliary penalty
for finger movement, which increases the difficulty of the
task. The robot has a low-level joint controller. The action
is the target angular position of all joints.

e) Ant Acrobatic: In this task, an ant learns to do
complex acrobatics (e.g. heading a pole) on a ball, which ex-
tremely challenges the ability of agents to maintain balance.
The action space is 8 dimensions. At each non-terminating
step, the reward r = walive×ralive+waction×raction+wenergy×
renergy, where

• ralive = 1, walive = 0.5;
• raction = ∥a∥22, where a is joints action, waction =
−0.005

• renergy is joints power consumption, wenergy = −0.05

The reward is −1 for termination step. The action is the force
applied to all joints.

We conclude the observation space for each task in Ta-
ble III for easier reading.

TABLE III: Tasks Information

HUMANOID TIGHTROPE HUMANOID FOOTBALL TRIFINGER MOVE A1 BEAM ANT ACROBATIC

OBSERVATION DIMENSION 74 80 41 47 57

oC

TORSO

yTORSO yTORSO yTORSO xTORSO

zTORSO zTORSO zTORSO yTORSO

vTORSO,x vTORSO,x vTORSO,x zTORSO

vTORSO,y vTORSO,y vTORSO,y vTORSO,x

vTORSO,z vTORSO,z vTORSO,z vTORSO,y

ωTORSO,x ωTORSO,x ωTORSO,x vTORSO,z

ωTORSO,y ωTORSO,y ωTORSO,y ωTORSO,x

ωTORSO,z ωTORSO,z ωTORSO,z ωTORSO,y

αTORSO αTORSO αTORSO ωTORSO,z

βTORSO βTORSO βTORSO αTORSO

γTORSO γTORSO γTORSO βTORSO

γTORSO

TORSO JOINTS

θLOWER WAIST,x θLOWER WAIST,x

θLOWER WAIST,y θLOWER WAIST,y

θPELVIS,x θPELVIS,x

ωLOWER WAIST,x ωLOWER WAIST,x

ωLOWER WAIST,y ωLOWER WAIST,y

ωPELVIS,x ωPELVIS,x

aLOWER WAIST,x aLOWER WAIST,x

aLOWER WAIST,y aLOWER WAIST,y

aPELVIS,x aPELVIS,x

EXTERNAL OBJECTS

xBALL xCUBE xPOLE

yBALL yCUBE yPOLE

zBALL zCUBE zPOLE

vBALL,x HCUBE,x vPOLE,x

vBALL,y HCUBE,y vPOLE,y

vBALL,z HCUBE,z vPOLE,z

HCUBE,w ωPOLE,x

xCUBE TARGET ωPOLE,y

yCUBE TARGET ωPOLE,z

zCUBE TARGET UPPOLE,x

HCUBE TARGET,x UPPOLE,y

HCUBE TARGET,y UPPOLE,z

HCUBE TARGET,z xBALL

HCUBE TARGET,w yBALL

zBALL

vBALL,x

vBALL,y

vBALL,z

ωBALL,x

ωBALL,y

ωBALL,z

oS,i LIMB JOINTS

θUPPER ARM,x θUPPER ARM,x θFINGER UPPER θFRONT HIP

θUPPER ARM,z θUPPER ARM,z θFINGER MIDDLE θFRONT THIGH

θLOWER ARM,x θLOWER ARM,x θFINGER LOWER θFRONT CALF

θTHIGH,x θTHIGH,x ωFINGER UPPER θREAR HIP

θTHIGH,y θTHIGH,y ωFINGER MIDDLE θREAR THIGH

θTHIGH,z θTHIGH,z ωFINGER LOWER θREAR CALF

θKNEE,x θKNEE,x aFINGER UPPER ωFRONT HIP

θFOOT,x θFOOT,x aFINGER MIDDLE ωFRONT THIGH

θFOOT,y θFOOT,y aFINGER LOWER ωFRONT CALF

ωUPPER ARM,x ωUPPER ARM,x ωREAR HIP

ωUPPER ARM,z ωUPPER ARM,z ωREAR THIGH

ωLOWER ARM,x ωLOWER ARM,x ωREAR CALF

ωTHIGH,x ωTHIGH,x aFRONT HIP

ωTHIGH,y ωTHIGH,y aFRONT THIGH

ωTHIGH,z ωTHIGH,z aFRONT CALF

ωKNEE,x ωKNEE,x aREAR HIP

ωFOOT,x ωFOOT,x aREAR THIGH

ωFOOT,y ωFOOT,y aREAR CALF

aUPPER ARM,x aUPPER ARM,x

aUPPER ARM,z aUPPER ARM,z

aLOWER ARM,x aLOWER ARM,x

aTHIGH,x aTHIGH,x

aTHIGH,y aTHIGH,y

aTHIGH,z aTHIGH,z

aKNEE,x aKNEE,x

aFOOT,x aFOOT,x

aFOOT,y aFOOT,y

|N | 2 2 3 2 4

ACTION DIMENSION 21 21 9 12 8

	Introduction
	Background and Related Work
	Multi-Agent Reinforcement Learning (MARL)
	Symmetry in Robot Learning

	Single robot Control as MARL
	Dividing Single Robots into Multiple Parts
	Multi-Agent Reinforcement Learning Formulation
	Geometric Regularization

	Experiments
	Experiments with Online Reinforcement Learning
	Baselines
	Results

	Experiments with Offline Reinforcement Learning
	System Setup
	Baselines
	Evaluation

	Conclusion and Limitations
	References
	Appendix
	Extra Experimental Setups
	Hyperparameters
	Tasks Details

