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Abstract— Active traffic management with autonomous vehi-
cles offers the potential for reduced congestion and improved
traffic flow. However, developing effective algorithms for real-
world scenarios requires overcoming challenges related to
infinite-horizon traffic flow and partial observability. To address
these issues and further decentralize traffic management, we
propose an asymmetric actor-critic model that learns decen-
tralized cooperative driving policies for autonomous vehicles
using single-agent reinforcement learning. By employing atten-
tion neural networks with masking, our approach efficiently
manages real-world traffic dynamics and partial observability,
eliminating the need for predefined agents or agent-specific
experience buffers in multi-agent reinforcement learning. Ex-
tensive evaluations across various traffic scenarios demonstrate
our method’s significant potential in improving traffic flow at
critical bottleneck points. Moreover, we address the challenges
posed by conservative autonomous vehicle driving behaviors
that adhere strictly to traffic rules, showing that our cooper-
ative policy effectively alleviates potential slowdowns without
compromising safety.

I. INTRODUCTION

Traffic congestion is a prevalent issue in various parts of
our road system, such as intersections, ramps, and lane drops,
and significantly undermines traffic efficiency. It increases
accident risks, fuel consumption, emissions, and higher
driver frustration and discomfort [1]. To alleviate congestion,
research has extended beyond designing better road infras-
tructure to include innovative traffic management strategies,
from implementing variable speed limits [2] to enhancing
traffic signal intelligence [3], utilizing road sensors to feed
information to centralized units which, in turn, issue direc-
tives to drivers. However, the deployment of such centralized
control systems is often hindered by the costs and complexity
associated with their construction and maintenance.

The advent of autonomous vehicles (AVs) presents a
promising shift away from traditional traffic management
approaches and towards introducing more efficient methods
that capitalize on the capabilities of AVs for perception, com-
munication, and decision-making [4], [5], [6]. This evolution
suggests the possibility of substituting road sensors with the
distributed sensing and communication capabilities of AVs,
and replacing dynamic traffic signals with direct commands
to AVs, thereby simplifying the interaction with human-
driven vehicles (HVs) which continue to follow standard
traffic rules.

The authors are with the 1Department of Computer Science, University of
Freiburg, Germany, the 2Institute for Neural Computation, Ruhr University
Bochum, Germany, and the 3Department of Engineering, University of
Technology Nuremberg, Germany.

Despite their effectiveness in simulations, centralized traf-
fic management methods face significant challenges in real-
world applications. Issues such as limited bandwidth for
communication between AVs and control units and suscep-
tibility to adverse weather conditions can undermine their
effectiveness. To address these challenges and obviate the
need for centralized control, recent research has explored
decentralized decision-making based on AVs’ local obser-
vations, with multi-agent reinforcement learning (MARL)
emerging as a popular approach for decentralized vehicle
control [1], [7], [8], [9]. This approach has demonstrated suc-
cess across various domains, including gaming [10], traffic
light control [11], and resource scheduling optimization [12].
However, applying MARL directly to traffic management is
challenging, especially in accurately representing the infinite-
horizon and dynamic nature of traffic flow.

This paper introduces an asymmetric actor-critic
model [13] to learn decentralized cooperative driving
policies through single-agent reinforcement learning. By
integrating attention neural networks [14] with masking, the
novel actor-critic architectures can adeptly manage variable
traffic inputs and partial observability. It is worth noting that
while our method utilizes single-agent algorithms, it also
fits within the centralized-training-decentralized-execution
framework [15] of MARL. Unlike conventional MARL
algorithms, our approach is agent-agnostic, as it treats each
AV as a token of the system state, rather than as distinct
agents. This eliminates the need for a predefined set of
agents or the maintenance of agent-specific experience
buffers, a challenge in traffic environments where the agent
number can grow indefinitely with the episode length.

We test our approach rigorously against conventional con-
trollers in realistic traffic scenarios across various road sys-
tem features, including intersections, ramps, and lane drops.
The findings highlight the capacity of our method to substan-
tially enhance traffic flow using decentralized policies and
partial observations. Additionally, we investigate the impact
of conservative AV driving behaviors [16] and demonstrate
how our cooperative policy can effectively mitigate these
concerns, paving the way for a safer, more efficient, and
adaptable traffic management paradigm.

II. BACKGROUND AND RELATED WORK

A. Single-Agent and Multi-Agent Reinforcement Learning

Reinforcement Learning (RL) enables an agent to learn
decision-making by interacting with its environment, mod-
eled as a Markov Decision Process (MDP). At each step with
state s ∈ S, the agent selects an action a ∈ A according to



the observation o ∈ O and policy π(· | o). The system then
transitions to a new state s′ ∈ S according to the transition
probability P (s′ | s, a) and receives a scalar reward r ∈ R.
Overall, the agent aims at maximizing the expected dis-
counted cumulative reward maxπ Eπ,P

[∑+∞
t=0 γ

tR(st, at)
]
.

Multi-agent reinforcement learning (MARL) extends RL
for environments with multiple interacting agents, repre-
sented by Markov games. A Markov game is a tuple
⟨N ,S,O,A, P,Ri, γ⟩, where N is the set of all agents,
Oi and Ai are observation space and action space for
agent i, and O = ×i∈NOi and A = ×i∈NAi repre-
sents the joint observation and action space. Each agent
i maintains an individual policy and reward function. Let
Πi = {πi(ai | oi) : Oi → ∆Ai

} be the policy space for
agent i, then the objective for agent i is represented as
maxπi

Eπ,P

[∑+∞
t=0 γ

tRi(st, at)
]
.

B. Traffic Management with Reinforcement Learning

After the DARPA autonomous vehicle challenges [17],
[18], much effort has been taken to develop algorithms for
automated driving. This development process was substan-
tially accelerated through the utilization of deep learning
approaches. Reinforcement learning is mainly adapted by
two groups of tasks for vehicle decision making: 1) social
navigation [9], [19], [20], [21] to learn to navigate through
traffic by anticipating the motion of ambient objects; 2)
traffic management [6], [7] to improve traffic flow by coop-
erating with and influencing the behavior of vehicles in the
vicinity. Although both tasks focus on developing vehicle
control policies, they exhibit significant differences. While
the navigation goal of the individual AVs is to efficiently
reach their target locations, traffic management systems
typically aim at an improved overall traffic flow to benefit all
participants. Furthermore, traffic management environments
generally operate under an infinite horizon, with new ve-
hicles continuously entering the system, while navigation
tasks often terminate once the predefined vehicles reach
their destinations. Last but not least, to focus on improving
system efficiency, traffic management tasks always assume
an accident-free environment enabled by collision-checking
low-level controllers.

A substantial amount of work has been published in
traffic management systems. Early pioneering work [22],
[23] utilizes reinforcement learning based on closed-loop
maps. Despite the infinite-horizon traffic flow, the considered
environments are restricted due to their fixed set of vehicles.
Moreover, these works also assume full observability of
and perfect communication between the AVs. Others adopt
MARL to account for partial observability and a variable
number of agents [1], [7]. However, they are restricted to
a predefined set of agents [7]. Although the idea to reroute
the released AVs back to the map entrance makes it possible
for infinite-horizon traffic input, the flow rate is not able
to vary due to the fixed number of AVs. Moreover, agents
could exploit the unrealistic model by learning to predict
the reappearance of other AVs in the scenario. In this paper,

Fig. 1: Common traffic bottlenecks: on-ramp merge, four-
way intersection, three-way intersection, lane drop. AVs
follow the learned policy only in the blue areas as described
in Sec. III-A.1.

we aim to tackle a broad spectrum of challenges in traffic
management, including partial observability, infinite-horizon
traffic dynamics, and a fluctuating number of vehicles.

C. Safety and Cautiousness in Autonomous Driving

Critical traffic flow bottlenecks require careful interactions
between AVs and other road users to ensure safety. Strictly
following traffic rules with excessively cautious behavior,
however, may lead to inefficiencies and increased wait
times [24]. This is why several papers raise the question of
whether AVs should sometimes trade off safety for efficiency
similar to human drivers [16], [25], [26]. This complex
issue has yet to be thoroughly explored for infinite-horizon
traffic flow. We propose to use a decentralized policy to
mitigate the drawbacks of conservative AV behaviors through
collaboration, without compromising safety standards.

III. METHODS

Our method aims to solve the traffic management problem
in different bottleneck scenarios visualized in Fig. 1. We
propose a novel actor-critic model, that uses asymmetric
inputs to learn a decentralized cooperative driving policy for
individual AVs. Within this section, we will describe the state
and action spaces as well as the reward function and will
provide a detailed description of the asymmetric actor-critic
that allows for partial observability, infinite-horizon traffic
input, and a varying number of vehicles.

A. State, Observation, Action and Reward

We consider the task in standard reinforcement learning
settings. Proximal policy optimization (PPO) [27] is used as
the backbone algorithm. The standalone bottleneck locations
shown in Fig. 1 are the primary focus of this work. The
problem of on-ramp merge is visualized in Fig. 2 as an
example.

1) State Space: The state of the scenario consists of
a mask indicating existing vehicles and the features of
all vehicles. The state mask Ms is a boolean vector of
dimension C, where C is the capacity corresponding to
the maximum number of vehicles this scenario can hold.
Each value indicates the existence of one vehicle. The state



Fig. 2: Vehicle 2 intends to merge into a dense freeway.
Green vehicles are AVs, while white ones are HVs. The
dashed circle represents the sensing range of vehicle 1. A
gap for vehicle 2 to merge in can be created by either lane
changing of AV 1 or slowing down of AV 3.

feature Fs is represented by a 2D vector of dimension
C × dv, where dv is the length of the vehicle feature. The
feature vector of each vehicle is composed of eight values:
(x, y, sin(α), cos(α), v, l, c, t). Here, x and y represent the
position of the vehicle in the map (normalized by the
dimensions of the map), and α represents the angle of
its heading direction. The term v stands for the velocity,
which is normalized by the speed limit, while l is the
status of the turn signal, which uses values {−1, 0, 1} for
right-turning, no signal, and left-turning. Vehicles’ routes are
randomly selected at the beginning of each episode. The term
c represents the vehicle category and can take the values
{−1, 0, 1} for HV, inactivated AV, or activated AV. The term
t is the travel time of the AV in seconds since it entered the
map, which is normalized with an empirical value of 300.
The HV travel time is defined as −1 based on the assumption
that only AVs can record and communicate this information.

Only AVs near the bottleneck points are regarded as
activated and as driving according to the learned policy,
since the cooperative behavior mostly happens here. Other
AVs follow the default driver models [28], [29], which are
commonly used in traffic simulators. Including all AVs in
policy training would flood the training data with information
on a single modality. We select the activated AVs empirically
on certain lane segments (see Fig. 1) and leave it as future
work to automate this process.

2) Observation Space: To accommodate the partial ob-
servability of the decentralized policy, each AV is limited
to acquiring features from nearby vehicles within its sensing
range. The observation of the scenario is composed of a mask
indicating activated AVs and an observation mask. The AV
mask MAV is a boolean vector of dimension N , where N
is the maximum number of activated AVs. The observation
mask Mobs is a 2D boolean vector of dimension N × C,
where each row indicates the observed vehicles of each
AV. Using masks instead of extracting the observed vehicle
features can reduce computation and memory load. Com-
bined with the attention-based actor-critic, this observation
representation contributes to vectorizing the inference of the
reinforcement learning model. Similar to real-world traffic
conditions, vehicles’ destinations are not in the observation

and can only be inferred through the use of turn signals.
3) Action Space: The joint action space A has a dimen-

sion of N×da, where da is the number of discrete actions of
each vehicle. A 2D boolean vector of this dimension is given
as an action mask Ma. Although this is a large action space,
the policy sharing among AVs, which is explained in Sec. III-
B, enhances the training process by reducing the exploration
space [30]. Additionally, the action mask is utilized to further
reduce the exploration difficulty. The vehicles in the right-
most lane, for example, do not have the action of changing
to the right lane. The discrete action space of each vehicle
consists of six actions {aleft, aright, av0 , av1 , av2 , av3}, where
aleft and aright stand for changing into the left or the right
lane, and avi represents adjusting the velocity to vi. In this
work, four target velocities {0, 0.33, 0.66, 1} × vlimit are
chosen to give vehicles more flexibility during cooperation
while still forcing it to obey the speed limit vlimit. We note
that the actions only represent high-level driving intentions.
An AV selects an action every second and attempts to execute
lane-changing within the next 5 seconds after choosing aleft
or aright. The intention terminates either upon a successful
lane change or when the 5-second period expires. The low-
level control of the vehicles is handled by the simulator so
this method is focused on traffic management in a collision-
free environment. Combined with formal safety verification,
the hierarchical control strategy is beneficial for developing
safe and reasonable autonomous driving policies [31]. Incor-
porating a broader set of target velocities, acceleration, or
even utilizing a continuous space are all viable approaches.
Essentially, it represents a trade-off between the flexibility
of actions and the simplicity of exploration.

4) Reward Function: In our previous research [5], we
introduced a centralized controller to manage intersections of
mixed traffic with AVs and HVs. The controller used a ded-
icated reward function to balance the interests of individual
vehicles against the broader objective of improving overall
traffic flow. This paper adopts the same throughput-based
reward-shaping strategy to consider both fairness (equity)
and operational efficiency in traffic management:

rt = ηb + ηa ·
NTP

t∑
i=1

τi, (1)

where ηa and ηb are the linear equity factors, τi is the travel
time of the ith released vehicle in time step t, and NTP

t

represents the number of released vehicles in time step t.

B. Asymmetric Actor Critic
Methods have been proposed to handle a variable number

of observed vehicles [20], [32]. To manage the variability in
the number of observers (i.e. AVs) within the environment,
researchers frequently leverage multi-agent reinforcement
learning (MARL). However, existing MARL algorithms pos-
sess limitations that render them less effective for traffic
management applications, primarily due to
• the restriction to a predefined set of agents, which does not

apply to real traffic with variable vehicle amount growing
with episode length and
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Fig. 3: Policy network. The network input is from the on-
ramp scenario visualized in Fig. 2, where two AVs out of
three are activated.

• the requirement that each agent upholds its experience
buffer, policy, or critic function, thereby elevating com-
putational and memory demands compared to a stream-
lined approach utilizing a singular, centralized agent with
vectorized calculations.

In this work, we introduce an asymmetric actor-critic
model to meet the previously mentioned traffic management
requirements (see Figures 3 and 4). Although the same state
is given to both actor and critic, each AV does not see
the whole state. Inputting the state instead of the extracted
observation information for each activated AV is beneficial
for the vectorized calculation stream. Each activated AV
can still only attend to its observed vehicles due to the
Mobs input into the cross-attention layers, making the actor-
critic asymmetric. By representing each vehicle as an input
token of the overall system state rather than an individual
agent, as in conventional MARL algorithms, our method can
effectively handle infinite-horizon traffic environments with
dynamically changing numbers of AVs.

In the policy network, we first embed the normalized
vehicle features with a feed-forward network. Then we select
the tokens of the activated AVs with MAV and use them as
a query for the following attention calculation. We employ
the embedded features of all vehicles as key and value. The
policy network is mainly composed of a stack of two identi-
cal attention layers. Each layer consists of a cross-attention
calculation and a fully connected feed-forward network. As
suggested by the work on layer normalization [33], we
employ a residual connection after and a layer normalization
before each of these sub-layers. We only update the tensors
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Fig. 4: Critic network. The input embedding layer shares the
same parameters with the policy network.

of the query in each attention layer, while the key and value
always stay the same as the embedded tokens. As a result,
AVs do not communicate any information with each other
in the policy network, making the policy fully decentralized.
After the attention layers, we pass the encoded query features
through a linear projection to output the action logits for each
activated AV. We finally use the logits of dimension N×da to
build a multi-categorical distribution π(a | s) for the actions.
We utilize the mask MAV for the calculation of πθ(at | st)
and its entropy value in the PPO objective to account for only
the activated AVs. The design of the policy network results
in policy parameter sharing among AVs, which drastically
reduces the exploration space during training. Moreover, it
vectorizes the inference for all the AVs in one scenario.

The critic network uses the same embedded features as
query, key, and value for the attention layers. The network
mainly consists of a stack of two identical attention layers.
Each layer has a self-attention module and a feed-forward
network. The residual connections and layer normalization
are the same as those in the policy network. For the self-
attention calculation, Ms is utilized to guarantee that the
vehicles only attend to existing ones. The encoded features
of all vehicles are reduced to a single vector with the pooling
operation

∑
, which accommodates different numbers of

vehicles. After the last linear operation, it outputs the state
value V (st).

IV. EXPERIMENTS

In this section, we present the training and evaluation
results with different maps and penetration rates of AVs.
Afterwards, we explore the issue of conservative AVs in
particular with respect to the decentralized policies.

A. Experiment Setup

The microscopic traffic simulator SUMO [34] is utilized
for training and evaluation. The most typical bottleneck
locations in road systems shown in Fig. 1 are created to
test the utility of the proposed method:



On-ramp: Vehicles from the on-ramp merge into a two-
lane freeway. Freeway vehicles have the right of way.
Four-way intersection: The main road involving the upper
and the bottom edges has higher priority over the side road.
Three-way intersection: The main road, which consists
of the left and the right edges, has higher priority.
Lane drop: This map is the same as the most relevant
work [7]. Four lanes converge into two lanes, which then
merge into a single lane. The priority of all the lanes is
equal so that vehicles normally take turns merging into the
new lane in “zipper” fashion.
1) Traffic Episodes for Training and Evaluation: To make

it easier to reproduce the results and compare different
methods, we generate two collections of traffic episodes for
training and evaluation. The approach to generating these
episodes is similar to that of our previous work [5]. Each of
them has a duration of 1200 s. We sample the input traffic
flow and its distribution on different routes randomly. It can
vary drastically during the whole episode. Vehicles can turn
into any connected lanes with a randomly sampled turning
rate. All these methods result in complex and relatively
realistic traffic conditions, exposing great challenges for the
learning algorithm. The training traffic data for each map
comprises 5000 episodes, while the evaluation data for each
traffic condition includes 20 episodes.

2) Baselines: Three traffic controllers are employed to
compare with our proposed decentralized controller, which
we refer to as decentralized vehicle controller (DVC) for
simplicity in data visualization. 1) No controller (NC): all
the vehicles only follow the driver models in SUMO. 2)
Intelligent traffic signal control (ITSC): courteous virtual
traffic signal control (CVTSC) [5] with full observability
is implemented for intersections and the results of feedback
controller ALINEA [7] is used for lane drop. 3) Centralized
vehicle controller (CVC): based on the models shown in
Fig. 3 and Fig. 4 we design a centralized controller, where
every AV has full observability. The critic network is the
same as the decentralized controller. In the policy network,
instead of keeping the key and value unchanged in the
attention layers, the features of the activated AVs are updated
along with the query values. As a result, the activated
AVs can not only observe all the other vehicles but also
communicate implicitly with each other in the policy.

3) Implementation: We employ the PPO algorithm from
RLLib 2.4.0 [35] with 32 workers for policy rollout.
Training converges within 2 to 4 hours on a desktop
equipped with 24 CPU cores and an NVIDIA RTX 4060
Ti GPU. Each setting is trained with five randomly chosen
seeds [8715736, 21320071, 27631279, 38961730, 88104531].
The discount factor γ = 0.98. Other hyper-parameters,
including equity factors, batch size, mini-batch size, value
loss coefficient, entropy coefficient, and learning rate, are
selected through grid search for CVC with an AV pene-
tration rate of 30%. The proposed method converges well
in all settings across different seeds. Our code is publicly
available at https://github.com/shengchao-y/
MAAAC-driving.

B. Mitigating Congestion with Autonomous Vehicles
According to previous research, the performance of de-

centralized traffic management controllers depends on the
penetration rate and the observation range. To evaluate their
effect on the proposed methods, we train and evaluate the
controllers for each map with 5 different penetration rates
of AV in {5%, 10%, 20%, 40%, 80%}. The AV observation
range is 100m for these environments. Additionally, we train
the decentralized controllers with all five penetration rates
and an observation range of 50m. The varying observation
range does not impact the centralized controllers due to their
full observability. The results comparing the performance of
different methods in different environments are shown in
Table I. Both CVC and DVC can improve the throughput
in all scenarios compared with the simple baseline with no
high-level controller. Besides, several interesting results can
be observed in the data.

1) Comparison to MARL Results: In previous studies on
lane drop scenarios, the traffic signal controller ALINEA
was found to be the best-performing approach [7]. Our
decentralized policies, developed through a centralized train-
ing algorithm, not only outperform those MARL methods
but also exceed the performance of ALINEA under certain
traffic conditions. These findings validate our hypothesis that
algorithms designed to adapt to fluctuating traffic inputs
can generate more effective policies compared to MARL
strategies that assume static traffic flow conditions.

2) Performance Degradation at Higher Penetration Rates:
Unlike the outcomes observed in our prior work on a virtual
traffic signal controller [5], where throughput monotonically
increased with the autonomous vehicle (AV) penetration rate,
we observe a performance degradation under certain condi-
tions with the proposed vehicle controllers. This phenomenon
is most prominent at a high penetration rate of 80%. Directly
controlling individual AVs results in a substantially larger
action space for the entire system compared to traffic signal
control, which manages the intersection with a small set
of signals. In scenarios such as lane drops, where up to
16 AVs may be active, this corresponds to a joint action
space size of 616 ≈ 2.8× 1012. Although parameter sharing
can help mitigate the expansion of the exploration space, it
nonetheless grows exponentially with the number of activated
AVs. We hypothesize that the expansion of the search space
introduces substantial challenges to the training process. As a
result, ITSC achieves the best performance for intersections.

3) Observation Range Impact on Performance: The im-
pact of the observation range, specifically 100m versus 50m,
on performance is subtle, except for the lane drop scenario.
In lane drops, where higher speed limits result in increased
vehicle separation, the benefit of a larger observation distance
is higher. Conversely, in scenarios characterized by closer
vehicle proximity, the additional data from an extended
observation range does not yield a clear advantage and may
detract from overall performance.

4) Centralized Control Not Always Superior: Although
CVC agents leverage global state information to control
individual vehicles, this approach does not inherently yield



Controller 3-way intersection on-ramp 4-way intersection lane drop
1000 1500 2000 2500 3000 3500 4000 4500 1000 1500 2000 2500 1500 2000 2500 3000

NC 98.2 84.9 65.5 53.6 97.9 96.5 88.3 79.0 98.3 85.0 67.2 54.0 99.4 78.1 62.3 51.9

DVC-5-100 98.2 90.3 74.8 61.9 97.9 96.6 88.5 79.2 98.1 87.8 70.2 57.5 98.9 92.9 75.6 63.0
DVC-10-100 98.5 93.3 78.4 65.0 97.9 96.7 88.8 79.3 98.0 91.1 72.5 58.8 99.5 95.1 78.0 62.3
DVC-20-100 98.4 94.6 78.9 65.2 97.9 96.8 89.0 79.5 97.9 90.9 72.1 59.1 99.6 97.6 79.2 66.7
DVC-40-100 98.2 92.9 77.9 68.1 97.9 96.9 89.5 79.9 98.2 91.0 72.6 58.4 99.1 99.9 81.8 67.6
DVC-80-100 98.5 95.0 81.2 67.8 97.9 97.1 90.5 80.8 98.0 89.9 71.4 58.8 99.5 99.9 84.5 67.0

CVC-5 98.2 92.6 77.8 64.0 97.8 96.7 88.6 79.2 97.2 89.1 70.3 58.4 99.3 94.1 76.2 62.0
CVC-10 98.4 93.3 79.2 66.5 97.9 96.8 88.8 79.4 98.0 90.0 71.4 58.8 99.3 96.2 78.0 64.5
CVC-20 98.4 95.3 80.6 67.6 97.8 96.8 89.2 79.8 97.5 89.0 69.6 58.7 99.1 98.9 81.2 65.7
CVC-40 97.6 86.2 72.9 60.6 97.9 97.0 89.7 80.0 98.0 90.4 71.0 59.1 99.1 99.0 81.2 67.8
CVC-80 98.2 92.8 77.4 63.9 97.9 97.1 90.5 80.8 97.9 88.6 70.5 57.8 99.6 99.0 83.4 61.6

DVC-5-50 98.2 92.1 76.2 63.8 97.9 96.6 88.5 79.0 98.2 88.1 68.0 57.5 99.6 93.2 75.0 60.8
DVC-10-50 98.5 92.5 76.4 64.4 97.8 96.7 88.6 79.2 98.3 90.5 72.5 59.6 99.9 85.3 70.6 60.6
DVC-20-50 98.3 93.3 79.3 67.1 97.9 96.8 88.8 79.5 98.4 89.7 72.5 59.1 99.7 84.7 69.2 61.9
DVC-40-50 98.4 93.7 80.1 69.1 97.9 97.0 89.7 80.1 97.7 84.8 69.9 57.4 99.9 86.7 71.8 60.3
DVC-80-50 98.4 89.7 74.4 64.6 97.9 97.1 90.5 80.8 98.3 89.1 71.2 58.8 99.4 82.0 71.4 59.0

ITSC 98.4 97.2 92.7 86.1 - - - - 98.2 93.7 84.9 70.8 99.6 97.8 82.4 68.7

TABLE I: Throughput (%) comparison across different maps and traffic inputs under various control schemes. Throughput,
defined as the ratio of output to input traffic flow, is computed as an average across 20 episodes and five seeds. Traffic input
is measured in vehicles per hour. Policy names, denoting the trained controllers, concatenate the AV penetration rate and
the observation range for clarity. For instance, DVC-5-100 indicates a policy with a 5% AV penetration rate and a 100m
observation distance. ITSC refers to intelligent traffic signal control, employing CVTSC [5] with an 80% AV penetration at
intersections and ALINEA [7] for lane drops. Within congested scenarios, the highest throughput (column-wise) is marked
in green background, while the second-highest is in bold.

better results than decentralized methods and can often
result in poorer performance. The benefits of centralized
policies are largely confined to specific scenarios, like lane
drops, where an extended observation range can substantially
enhance performance. However, in situations in which an
increased observation range does not offer a clear advantage,
centralized controllers perform comparably or are even less
effective, indicating that enhanced information exchange
among AVs does not necessarily contribute to improved
policy efficacy. We assume the performance drop of CVC
agents is caused by the increased observation space intro-
duced by the further vehicles. They make the optimization
more complex while bringing little useful information.

5) On-Ramp Dynamics: In the on-ramp scenario, there
are only minor throughput improvements. This could be
attributed to the parallel merging lanes offering vehicles
more cooperation flexibility compared to other scenarios
where cooperative maneuvers are confined to narrow spaces
at junctions or lane drop endpoints. Consequently, under
the default driver model settings in SUMO, the scope for
augmenting throughput on on-ramps appears constrained.
However, the mitigation of congestion is evident, which
can be demonstrated by the reduced average waiting times
for vehicles yet to be released (see Table II). At the end
of an episode, the waiting time twait for any vehicle not
having traversed the map is computed as the episode duration
minus the scheduled entry time for that vehicle. The obvious
reduction in average waiting times underlines the efficacy of
our approach in alleviating congestion.

Controller on-ramp
3000 3500 4000 4500

NC 14.4 37.0 173.7 326.1

DVC-5-100 14.0 34.9 169.0 321.1
DVC-10-100 13.9 33.1 166.3 320.7
DVC-20-100 13.8 32.4 164.2 316.0
DVC-40-100 13.9 31.6 153.7 309.2
DVC-80-100 14.2 29.3 139.0 294.9

CVC-5 14.1 35.9 169.6 322.7
CVC-10 13.9 30.9 164.2 316.8
CVC-20 14.2 31.7 157.8 311.4
CVC-40 14.3 29.3 152.4 309.3
CVC-80 14.2 29.3 139.0 294.9

DVC-5-50 14.0 34.6 171.9 325.8
DVC-10-50 14.4 35.9 171.3 322.7
DVC-20-50 14.0 33.2 165.6 316.7
DVC-40-50 13.9 27.7 150.3 307.5
DVC-80-50 14.2 29.3 139.0 294.9

TABLE II: Average waiting time Twait in seconds of un-
released vehicles at on-ramp under various traffic inputs
and controllers, corresponding the evaluation in Table I. In
congested scenarios, the best results are marked with green
background, and the second-best outcomes are in bold.

C. Too Cautious to Drive?

In SUMO, the driver model is defined with various pa-
rameters that influence vehicle behavior in car-following and
lane-changing situations. Parameters such as lcAssertive
and lcSpeedGain indicate the driver’s aggressiveness level.
Specifically, lcAssertive quantifies a driver’s tendency to
accept smaller front and rear gaps on the target lane during
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Fig. 5: Comparative analysis of traffic flow for different vehicle groups on the on-ramp map with a traffic input of 3500v/h.
Travel times (Ttravel) represent the median, lower, and upper quartiles for all vehicles successfully exiting the system across
20 evaluative episodes. Throughput quantifies the proportion of vehicles exiting versus the total vehicles introduced during
these episodes. ”NC-x” denotes scenarios without a controller at x% AV penetration, while ”DVC-x” refers to scenarios
employing our developed decentralized policy at the corresponding penetration rate.

a lane change, whereas lcSpeedGain reflects the driver’s
inclination to change lanes for potential speed benefits. Ve-
hicles characterized by lower values of these parameters are
deemed more conservative compared to the default settings
of lcAssertive = 1 and lcSpeedGain = 1. To explore
the impact of conservative autonomous vehicles (AVs) on
traffic, we conducted training sessions in environments with
lcAssertive = 0.1 and lcSpeedGain = 0 for AVs. Fur-
thermore, to mirror the design emphasis on comfort and
smooth driving experiences typically associated with AVs,
we reduced their maximum deceleration and acceleration
from 2.6 and 4.5m s−2 to 2 and 3.5m s−2, respectively. This
analysis focuses on the on-ramp scenario.

Fig. 5 illustrates the throughput and travel time of the re-
leased vehicles categorized in four groups under traffic input
3500v/h. With no controller (NC), we note a substantial in-
crease in congestion within the on-ramp lane as the presence
of AVs in the traffic rises. At a mere 5% AV penetration rate,
AVs on the on-ramp lane begin queuing, awaiting their turn
to merge into the freeway. Meanwhile, HVs in the on-ramp
lane manage to change lanes by forcing freeway vehicles to
slow down, effectively bypassing the queued AVs. However,
as AV penetration increases, the queue lengthens, eventually
obstructing the entire merging lane and preventing HVs from
accessing the merging zone. Consequently, the throughput
for vehicles on the on-ramp lane reduces to approximately
30% with an 80% AV penetration rate, accompanied by a
substantial increase in their travel time.

This analysis underlines public apprehensions regarding
AVs that, despite being engineered for safety and efficiency,
may inadvertently impair traffic flow. To anticipate these
issues, some researchers advocate for developing policies that
trade off safety for efficiency, emulating the more assertive
driving styles of human drivers. However, replicating human-
like driving behavior presents not only technical hurdles,
such as forecasting the movements of other vehicles but
also ethical concerns. Specifically, assigning responsibility
becomes complex when an algorithm deliberately prioritizes

speed over safety, potentially resulting in accidents.
Fortunately, we offer a promising alternative to address

this issue. The plots on the right side of Fig. 5 illustrate that
our cooperative driving strategies can mitigate congestion
caused by cautious AVs. Although these vehicles experience
longer travel times than their more assertive counterparts,
cooperation among AVs significantly narrows this gap. We
observe a slight increase in travel time for AVs on the
freeway, which helps keep the merging zone clear and
provides vehicles more opportunities to merge into traffic.
Remarkably, the throughput for vehicles on the on-ramp
lane increases threefold with an 80% AV penetration rate.
This substantial outcome indicates a feasible future where
conservative, cooperative AVs can deliver both safety and
efficiency.

V. CONCLUSION AND LIMITATIONS

In this paper, we consider the problem of improving
traffic flow at bottlenecks of the road system through a
decentralized control approach for automated vehicles with
partial observability. To solve this problem, we introduce
an asymmetric actor-critic model structure, trained using
single-agent reinforcement learning. By treating each AV as
a token of the state for the entire system rather than as a
distinct agent, this method can learn decentralized policies
for individual AVs in infinite-horizon traffic with dynamic
flow input. The evaluation against baseline controllers across
different bottleneck locations shows that our model sub-
stantially improves the traffic flow. The experiments further
demonstrate that cooperative autonomous vehicles can miti-
gate the problem of reduced traffic flow caused by their strict
adherence to traffic rules.

Despite the advancements, several aspects warrant future
research. For example, the exploration problem induced by
the extensive action space of controlling individual AVs
presents a challenge, especially at high AV penetration
rates. Future research could focus on developing methods to
selectively activate a smaller number of AVs for control. This
adjustment could potentially enhance policy effectiveness



by focusing on AVs that substantially influence traffic flow,
considering that many vehicles merely follow their leaders
in traffic.
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[34] P. Á. López, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. WieBner,
“Microscopic traffic simulation using SUMO,” in Proc. of the IEEE In-
ternational Conference on Intelligent Transportation Systems (ITSC),
2018, pp. 2575–2582.

[35] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “RLlib: Abstractions for
distributed reinforcement learning,” in Proceedings of the 35th Interna-
tional Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, J. Dy and A. Krause, Eds., vol. 80. PMLR, 10–15
Jul 2018, pp. 3053–3062.


