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Abstract— Robustness against Out-of-Distribution (OoD)
samples is a key performance indicator of a trajectory predic-
tion model. However, the development and ranking of state-of-
the-art (SotA) models are driven by their In-Distribution (ID)
performance on individual competition datasets. We present an
OoD testing protocol that homogenizes datasets and prediction
tasks across two large-scale motion datasets. We introduce a
novel prediction algorithm based on polynomial representations
for agent trajectory and road geometry on both the input and
output sides of the model. With a much smaller model size,
training effort, and inference time, we reach near SotA perfor-
mance for ID testing and significantly improve robustness in
OoD testing. Within our OoD testing protocol, we further study
two augmentation strategies of SotA models and their effects
on model generalization. Highlighting the contrast between ID
and OoD performance, we suggest adding OoD testing to the
evaluation criteria of trajectory prediction models.

I. INTRODUCTION

Trajectory prediction is essential for autonomous driving,
with robustness being a key factor for practical applications.
The development of trajectory prediction models is catalyzed
through public datasets and associated competitions, such as
Argoverse 1 (A1) [1], Argoverse 2 (A2) [2], and Waymo
Motion (WO) [3]. These competitions provide a set of
standardized metrics and test protocol that scores prediction
systems on test data withheld from all competitors. This is
intended to ensure two things: objective comparability of
results and generalization ability due to the held-out test set.

Among the top-performing models based on deep learning,
we observe a trend to ever more parameter-rich and expres-
sive models [4], [5], [6] - explicitly trained with the data
of each competition. This begs the question of whether the
stellar performance of these models is due to their ability to
adapt to each dataset specifically, i.e., over-fit. Despite efforts
to guard against over-fitting by withholding test samples,
these test examples still share similarities with the train-
ing samples, such as the sensor setup, map representation,
post-processing, geographic, and scenario selection biases
employed in dataset creation. Consequently, the test scores
reported in each competition are examples of In-Distribution
(ID) testing.

For practical application, the performance of trajectory
prediction should be independent of these shared biases in
a single dataset and measured by Out-of-Distribution (OoD)
testing, e.g., across different datasets. As an example, Figure
1 clearly visualizes the distribution shift caused by different
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map generation processes between A2 and WO. However,
the efforts for cross-dataset evaluation are hampered by
the in-homogeneous data format and task details among
datasets and competitions. Notable distinctions are the dif-
ferent lengths of scenario, observation history, and prediction
horizon in each dataset.

Fig. 1: Kernel density plot of the maximum absolute curva-
ture and length for 5000 random lane segments in A2 and
WO. Contours indicate the 20-th, 40-th, 60-th, and 80-th
percentiles, respectively.

Therefore, in this work, we attempt to homogenize the data
formats and prediction tasks to enable OoD testing across
two large-scale motion datasets: A2 and WO. Based on our
OoD testing, we further explore the possibilities to enhance
model robustness against OoD samples.

One strategy to improve the robustness of any deep learn-
ing model is to increase the amount of training data. Bahari
et al. [7] have shown that generalization performance can be
improved by augmenting training data with programmatically
created variations. While such an approach does increase
generalization ability, it further increases training effort and
cannot guarantee generalization. Further, ensuring that a data
augmentation strategy covers all possible variations is not
easy.

We follow a complementary strategy and instead of pro-
viding more training data, limit the expressiveness of our
model by constraining its input and output representation.
This comes with the added benefit of a much smaller model
size, reduced training effort and faster inference times. At
the same time, we retain near state-of-the-art (SotA) predic-
tion performance for ID test cases and show significantly
improved robustness in OoD testing. Our key contributions
are as follows:
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Fig. 2: Our proposed model architecture. Inputs: Agent histories and road geometry are both represented via polynomials.
Outputs: The tracked initial states and predicted states are fused into one polynomial trajectory prediction, ensuring continuity
of past observation and future prediction.

• We provide a dataset homogenization protocol that enables
Out-of-Distribution (OoD) testing of prediction algorithms
across different large-scale motion datasets.

• We study the OoD robustness of two SotA models and
explore the effect of their augmentation strategies on In-
Distribution (ID) and OoD test results.

• We propose an efficient multi-modal predictor baseline
with competitive ID performance and superior OoD ro-
bustness by representing trajectories and map features
parametrically as polynomials.

Our paper is organized as follows: We first review the recent
trajectory prediction models and their design decisions with
respect to data representation and augmentation strategy. Out
of the body of related work, we select two benchmark models
and detail how dataset and competition characteristics have
shaped their model designs. Next, we propose our dataset
homogenization protocol for OoD testing and detail our
approach of using constrained parametric representations. We
then report ID and OoD testing results for all three models
plus a number of variants. Our results highlight the impact
of different augmentation strategies in ID and OoD testing
and the increase in OoD robustness due to our polynomial
representations. Finally, we argue for adopting OoD testing
as a performance measure of equal value to ID testing.

We open-source our code online [8].

II. RELATED WORK AND BENCHMARK MODELS

A. Data Representation

The formats of individual datasets and competition rules
greatly influence the design decisions of the models proposed
in the literature. Models based on deep learning typically opt
for a direct ingestion of the data as given. Recent studies
employ sequence-based representation, e.g., sequences of

data points, as the model’s input and output [9], [5], [10],
[11]. This representation aligns the format of measurements
in datasets and efficiently captures various information, e.g.,
agent trajectories and road geometries. The downside of
this representation is the high redundancy and variance. The
presence of measurement noise and outliers in datasets may
lead to physically infeasible predictions. Additionally, the
computational requirement of this approach scales with the
length and temporal/spatial resolution of trajectories and road
geometries.

Some previous works explored the possibility of using
polynomial representations for predictions [12], [13]. Su et
al. [13] highlight the temporal continuity of this representa-
tion, i.e., the ability to provide arbitrary temporal resolution.
Reichardt [14] argues for using polynomial representations
to integrate trajectory tracking and prediction into a filter-
ing problem. Polynomial representations restrict the kind
of trajectories that can be represented and introduce bias
into prediction systems. This limited flexibility is generally
associated with greater computational efficiency, smaller
model capacity and hence better generalization. However,
representing the inputs with polynomials has not been ex-
tensively researched and deployed in recent works. In a
recent study, we showed that polynomials of moderate degree
can represent real-world trajectories with a high degree of
accuracy [15]. This result motivates the use of polynomial
representations in our architecture.

B. Data Augmentation

Competitions typically designate one or more agents in
a scenario as focal agent and only score predictions for
focal agents. However, training the model exclusively with
the focal agent’s behavior fails to exploit all available data.
To address this, predicting the future motion of non-focal



agents is a typical augmentation strategy for training. As
there are many more non-focal agents than focal agents,
another important design decision relates to how authors
interpret the importance of focal vs. non-focal agent data.

We select two open-sourced and thoroughly documented
SotA models: Forecast-MAE [9] (FMAE) and QCNet [5],
with nearly 1900k and 7600k parameters, respectively. As
summarized in Table I, both models employ sequence-based
representation but exhibit different strategies in dealing with
non-focal agents:

Heterogeneous Augmentation: FMAE follows the pre-
diction competition protocol and prioritizes focal agent
prediction. Thus, agent history and map information are
computed within the focal agent’s coordinate frame. Com-
pared to the multi-modal prediction of the focal agent,
FMAE only outputs uni-modal prediction for non-focal
agents. The prediction error of the focal agent also weighs
higher in loss function than non-focal agents.
Homogeneous Augmentation: QCNet does not focus on
the selected focal agent and proposes a more generalized
approach. It encodes the information of agents and map
elements in each agent’s individual coordinate frame. It
outputs multi-modal predictions for focal and non-focal
agents alike, ensuring a consistent prediction task for all
agents. The loss of focal agent prediction shares the same
weight as non-focal agents.

Figure 3 illustrates the augmentation strategies of our bench-
mark models FMAE and QCNet.
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Fig. 3: The two augmentation strategies for non-focal agent
data employed in benchmark models. Left: FMAE employs
heterogeneous augmentation, representing information in the
focal agent’s coordinate frame and only making uni-modal
predictions for non-focal agents. Right: QCNet employs
homogeneous augmentation, encoding information in each
agent’s individual coordinate frame and making multi-modal
predictions for both focal and non-focal agents alike.

To study the influence of these augmentation approaches
independently of data representation, we add a third augmen-
tation strategy for comparison: no augmentation. This can

simply be achieved by removing the loss of non-focal agents
in each model, thus limiting the model to learn from focal
agent behavior only. We denote the benchmark models with-
out augmentation as “FMAE-noAug” and “QCNet-noAug”.

For our own model, we will implement all three modes of
augmentation for comparison.

TABLE I: Model variants under study based on augmentation
strategies and data representations.

augmentation input and output representation
strategy sequence-based polynomial-based (ours)
heterogeneous FMAE [9] EP-F
homogeneous QCNet [5] EP-Q

w/o augmentation FMAE-noAug EP-noAugQCNet-noAug

III. OOD TESTING AND DATASET HOMOGENIZATION

The differences in the data collection processes and sensor
platforms between motion datasets of different origin present
us with the opportunity to perform OoD testing on truly
independent data samples. However, this also comes with the
challenges of working around inconsistencies in data formats
and prediction tasks between datasets.

We propose our OoD testing protocol by training and test-
ing models on two different large-scale datasets: A2 and WO.
We summarise the characteristics of both datasets in Table II.
Algorithmic improvements in generalization ability are more
easily identified when training on the smaller of two datasets
and testing on the larger ones. Consequently, we train on the
training set from A2, comprising 199 908 samples. As the
agents’ future trajectories in the test sets of the A2 and WO
competitions are not accessible, they cannot be included in
our homogenization protocol. Therefore, for ID testing, we
settle for the validation split of A2, and for OoD testing, we
use the validation split of WO. The difference between ID
and OoD results demonstrates a model’s robustness against
OoD test cases.

There are multiple notable distinctions between A2 and
WO. One obvious distinction is the different scenario
lengths: a scenario in A2 is 11 seconds long and consists of
5 seconds of observation history and 6 seconds of future to
predict. WO only provides 1.1 seconds of observation history
but requires an 8-second prediction horizon. Moreover, A2
designates and scores only one focal agent per scenario,
whereas there are up to 8 such focal agents in WO. The
focal agent in A2 is never the ego vehicle and remains fully
observed throughout the prediction horizon, which is not
guaranteed in WO.

To facilitate the OoD testing, we homogenize the datasets
and adopt the following settings for both datasets and sum-
marize them in Table II:
• History Length: We set the history length to 5 seconds (50

steps) as in A2.
• Prediction Horizon: We maintain the 6-second prediction

horizon for training but only evaluated the first 4.1s of
prediction due to the limited recording length in WO.

• Map Information: We exclude boundary information and
the label of junction lanes due to the information’s absence



TABLE II: Datasets comparison and homogenization protocol for OoD testing.

Argoverse 2 (A2) Dataset [2] Waymo Open Dataset (WO) [3] Homogenized Dataset
train test

#samples (train / val / test) 199 908 / 24 988 / 24 984 487 002 / 44 097 / 44 920 -
#cities 6 6 -
scenario length 11s 9.1s -
sampling rate 10 Hz 10 Hz -
history length 5s 1.1s 5s
prediction horizon 6s 8s 6s 4.1s

map
information

lane center yes yes yes
lane boundary yes not for junction lanes no
junction lanes labeled yes no no

prediction
target

# focal agents 1 up to 8 1
ego included no yes no
fully observed yes not guaranteed yes

in WO. Only lane segments and crosswalks are considered
map elements in homogenized data due to their availability
in both datasets.

• Focal Agent: We take the same focal agent as labeled
in A2. From WO, only the first fully observed, non-ego
agent in the list of focal agents is chosen. As the list of
focal agents is unordered, this corresponds to randomly
sampling a single fully observed focal agent.

Fulfilling the focal agent’s selection criterion above, we have
24 988 valid samples from the A2 validation set for ID testing
and 42 465 valid samples from the WO validation set for
OoD testing, respectively.

IV. PROPOSED MODEL AND DATA REPRESENTATION

The key innovation of our model is its choice of repre-
sentation for map elements and trajectories on both input
and output sides of the model. Here, we propose to use
a parametric representation in terms of polynomials. This
constrains the model’s expressiveness compared to sequence-
based data representations. Such a parametric representation
is easily pre-computed for map elements and algorithms
for online tracking and filtering agent observations into
trajectories already exist [14].

Our prior work on trajectory representation [15] has
shown that polynomials are an accurate representation of
agent trajectories and should not present a limiting factor to
the achievable prediction performance. Independent research
suggests that sequence-based data representations may carry
spurious high-frequency information, which can result in
over-fitting [16].

With the polynomial inputs and outputs as our key inno-
vation, we denote our contribution: Everything Polynomial
(EP). We now elaborate our approach to represent data with
polynomials.

A. Inputs as Polynomials

We employ Bernstein polynomials to represent the agent
history and map geometry. The parameters of Bernstein
polynomials have spatial semantics as control points.

Agent History: Based on the Akaike Information Criterion
(AIC) [17] presented in [15], the 5-second history trajectories
of vehicles, cyclists, and pedestrians in A2 and WO are
represented optimally with 5-degree polynomials. We also

use the 5-degree polynomial for the ego vehicle. We track the
control points of agent history with the method proposed in
[14] and incorporate the observation noise models proposed
in [15].

Map: Map elements, such as lane segments and cross-
walks, are represented with 3-degree polynomials - a de-
gree consistent with OpenDRIVE [18] standards. We fit the
sample points of map elements via the total-least-squares
method by Borges-Pastva [19]. Lane segments in WO are
longer and more curved than those in A2 as visualized in
Figure 1, posing a challenge for fitting them with 3-degree
polynomials. Therefore, we iteratively split the lane segments
by half until the fit error is under 0.1m.

The polynomial representation only requires 40.8% and
8.7% of data space compared to the sample points provided
in A2 and WO, respectively.

B. Outputs as Polynomials
The 6-second predicted trajectories are formulated as 6-

degree polynomials, one degree higher than indicated by AIC
in [15]. Instead of predicting the polynomial parameters of
future trajectories, our model predicts several future kine-
matic vehicle states. By fusing the predicted future states
with current tracked states, we recalculate the polynomial
parameters and reconstruct the future trajectory. Details are
presented in Appendix I.

C. Model
The pipeline of EP is illustrated in Figure 2. EP employs

the popular encoder and decoder architecture and its imple-
mentation details are presented in Appendix I.

Following the different augmentation strategies by our
benchmark models, we implemented three EP variants: (1)
EP-F employs the heterogeneous augmentation of FMAE.
(2) EP-Q employs the homogeneous augmentation of QCNet.
(3) EP-noAug has no augmentation. Table I summarizes the
design choices of the different models under study.

Due to the compact polynomial representations for inputs
and outputs, EP variants only employ around 345k model
parameters, which is only 4.5% the size of QCNet and 18.2%
the size of FMAE as listed in Table III.

Since we focus on OoD robustness, scaling up our model
for more model capacity and potentially better ID perfor-
mance is not prioritized in this work.



TABLE III: Result of In-Distribution testing (6-second prediction horizon) in competition setting on Argoverse 2 test set.
For all the metrics, lower the better. Inference time is tested on one Tesla T4 GPU with a scenario of 50 agents and 150
map elements.

model minADE1 minFDE1 minADE6 minFDE6 # model inference time
[m] [m] [m] [m] params [k] [ms]

QCNet [5] 1.702 4.309 0.643 1.244 7600 120.89
(100.0%) (100.0%) (100.0%) (100.0%) (100.0%) (100.0%)

Forecast-MAE [9] 1.741 4.355 0.709 1.392 1900 12.63
w pre-train (102.2%) (101.1%) (110.3%) (111.9%) (25.0%) (10.4%)

EP-Q (ours) 2.134 5.415 0.841 1.683 334 5.72
(125.4%) (125.7%) (131.0%) (135.3%) (4.4%) (4.7%)

EP-F (ours) 1.887 4.567 0.801 1.526
345

(4.5%)
4.66

(3.9%)
(110.9%) (106.0%) (124.6%) (122.7%)

EP-F w flip (ours) 1.846 4.456 0.786 1.485
(108.5%) (103.4%) (122.2%) (119.4%)

V. EXPERIMENTAL RESULTS

A. Experiment Setup on Homogenized Data

On the homogenized A2 training data, all models are
trained from scratch with hyperparameters reported for A2
competition performance. Due to our dataset homogenization
settings, we have to adjust the data pre-processing and
corresponding encoding layers in QCNet, e.g., removing the
layers for encoding the label of junction lanes. FMAE’s
architecture is not affected by our data homogenization.
Training settings of EP variants are summarized in Appendix
I-C.

B. Metrics

For ID testing, we use the official benchmark metrics, in-
cluding minimum Average Displacement Error (minADEK)
and minimum Final Displacement Error (minFDEK), for
evaluation. The metric minADEK calculates the Euclidean
distance in meters between the ground-truth trajectory and
the best of K predicted trajectories as an average of all future
time steps. Conversely, minFDEK focuses solely on the
prediction error at the final time step, emphasizing long-term
performance.

For OoD testing, we also propose ∆minADEK and
∆minFDEK as the difference of displacement error be-
tween ID and OoD testing to measure model robustness. In
accordance with standard practice, K is selected as 1 and 6.

C. ID Results with Competition Settings

Like the other studies, we first present the best ID test
results of all models according to the A2 prediction compe-
tition protocol in Table III. Benchmark results are from the
original authors. For EP, we also include the results when
augmenting the data by symmetrizing around the x-axis, i.e.
flipping all left turns into right turns and vice versa.

Though the performance in ID testing on the A2 test set
is not the focus of our work, our EP still achieves near state-
of-the-art performance with a significantly smaller model
size. For instance, with the “flip” data augmentation, the
minFDE1 of EP-F is only 3.4% higher compared to QCNet.

Though EP exhibits a considerable gap compared to QCNet
in terms of multi-modal prediction (K=6), it exhibits only
less than 10cm additional prediction error in minADE6 and
minFDE6 compared to FMAE with pre-train. EP has a
faster inference time, requiring only 3.9% of QCNet’s and
36.9% of FMAE’s inference time, which is essential in real-
time applications. Another notable point is the better ID
performance of EP-F compared to EP-Q. This indicates that
heterogeneous augmentation shows more effectiveness than
homogeneous augmentation in ID testing when only a single
focal agent is scored.

Next, we examine the impact of dataset homogenization
and augmentation. In Figure 4, we can see that the alter-
ations due to dataset homogenization, e.g., excluding lane
boundaries, have only little effect on model performance.
Removing the data augmentation, however, has a small but
noticeable negative effect on ID performance for both bench-
mark models. These results also show that our retraining
works as expected.

Fig. 4: ID performance of benchmarks on A2. Dashed
Lines: Results reported by original authors with competition
settings. Bars: Results for retrained benchmark models on
homogenized datasets.

D. OoD Testing Results

The key question now is whether the results achieved
in ID testing on A2 will translate to OoD testing on WO.
Figure 5 summarizes the results. As discussed, the relative



and absolute increase in the prediction metric will serve as
our measure of robustness and generalization ability. We will
present OoD results from three perspectives: (1) augmenta-
tion strategy, (2) data representation, and (3) contrast results
between ID and OoD testing.

1) Augmentation Strategy: We observe that without aug-
mentation, i.e., excluding the non-focal agents in the loss
function, all models generalize poorly on all metrics, but
our model has the smallest relative and absolute increase in
error in all cases.

Though heterogeneous augmentation does marginally re-
duce FMAE’s prediction error for both ID and OoD testing,
the relative and absolute increase in prediction error between
ID and OoD samples is practically the same as in the
non-augmented case, e.g., +0.279m (61.5%) vs. +0.295m
(69.7%) in ∆minADE6.

On the other hand, the robustness of QCNet significantly
benefits from the homogeneous augmentation with reduced
∆minFDE1 from +1.802m (71.5%) to +1.067m (46.4%).
Compared to EP-noAug, EP-F and EP-Q replicate the be-
havior observed from FMAE and QCNet, e.g., with only
a marginal impact from heterogeneous augmentation and a
significant impact from homogeneous augmentation.

2) Data Representation: Our EP variants exhibit im-
proved robustness compared to benchmarks with sequence-
based data independent of data augmentation strategy. For
instance, EP-F outperforms FMAE by demonstrating lower
prediction errors and a lower increase in prediction er-
rors in OoD testing. Similarly, compared to QCNet, EP-
Q also demonstrates improved robustness, even achieving
a reduction in prediction error of −0.022m (−1.9%) in
∆minADE1.

3) ID vs OoD results: We observe multiple reversals in
performance between ID and OoD testing results: (1) Despite
FMAE demonstrating comparable ID performance to QCNet,
it exhibits significantly lower robustness than QCNet in OoD
testing. (2) While FMAE and QCNet outperform EP on ID
samples, EP shows lower prediction error than FMAE and
QCNet across multiple metrics in OoD testing. (3) There is
a reversal in performance between EP-F and EP-Q in both
ID and OoD testing.

TABLE IV: ID and OoD testing results (4.1-second predic-
tion horizon) of EP-F and EP-F (w flip).

model minADE1|minFDE1 [m]
ID OoD

EP-F 1.08 2.56 1.32 3.45
EP-F (w flip) 1.06 2.50 1.35 3.53

Moreover, we also note the contrasting impact of “data
flipping” in ID and OoD testing, as summarized in Table
IV. This indicates that improper data augmentation can in
fact impair model generalization.

The differences between ID and OoD results underscore
the importance of OoD testing for a thorough evaluation of
trajectory prediction models.

Fig. 5: The OoD testing results of FMAE, QCNet, EP
and their variants. We indicate the absolute and relative
difference in displacement error between ID and OoD results.
Solid: The ID results by training on the homogenized A2
training set and testing on the homogenized A2 validation
set. Transparent: The increased displacement error in OoD
testing by training on the homogenized A2 training set and
testing on the homogenized WO validation set.

VI. CONCLUSION

Recent SotA trajectory prediction models have thoroughly
optimized their In-Distribution (ID) performance and present
outstanding results in test sets evaluated in individual predic-
tion competition. However, better ID performance does not
automatically guarantee higher Out-of-Distribution (OoD)
performance. In fact, performance rankings can and do
reverse in OoD settings. Our proposed OoD testing protocol
enables a fresh perspective for model evaluation in trajectory
prediction that we hope the community will adopt. With
our protocol, we demonstrate the robustness improvement
from homogenous augmentation and prove the benefits of
polynomial representation as employed in our EP model.



With a much smaller model size and lower inference time,
EP achieves near SotA ID performance. Additionally, EP
exhibits significantly improved out-of-distribution (OoD) ro-
bustness with minimal performance drop compared to bench-
mark models. This work represents an initial step toward a
trajectory prediction model that is capable of generalizing to
different datasets and is robust under changes in sensor setup,
scenario selection strategy or post-processing of training
data. More sophisticated models based on this concept will
be developed to improve the performance for both In- and
Out-of-Distribution evaluations.
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APPENDIX I
IMPLEMENTATION DETAILS OF OUR MODEL

A. Model

1) Input: The control points of A agents in either focal
agent or individual coordinate are denoted as ωa

n ∈ RA×2

with n ∈ {0, 1, · · · , 5}. Following the popular vectorization
approach, we compute the vector between control points as
δan = ωa

n − ωa
n−1 for capturing the kinematic of agents.

To describe the spatial relationship, we employ the last
control point ωa

5 and the normalized vector θa
5 = norm(δa5)

as the reference position and orientation for agents. The
time window of agent appearance is denoted as TW ∈
RA×2. Therefore, the features of agents include ∆a =
[δa1 , δ

a
2 , · · · , δ

a
5 ], PIa = [ωa

5 , cos(θ
a
5), sin(θ

a
5)] and TW .

The features of M map elements are computed similarly
with considering the initial point as the reference, denoting as
∆m = [δm1 , δm2 , δm3 ] and PIm = [ωm

0 , cos(θm
1 ), sin(θm

1 )].
2) Encoder: As visualized in Figure 6, we employ sim-

ple 3-layer MLPs to encode the features of agents and
map elements. Semantic attributes, such as agent type and
lane type, are encoded with individual embedding layers.
Embedded features are element-wise added and fused to
agent tokens T a ∈ RA×D and map element tokens Tm ∈
RM×D, where D denotes the hidden dimension. Multiple
attention blocks based on Transformer [20] and ”pre-layer
normalization” [21] perform the map element-map element,
agent-map element and agent-agent attentions sequentially
and update Tm and T a. All EP variants share the same
encoder architecture.

3) Decoder: In Figure 7, we visualize the two decoder
architectures of EP-F (EP-noAug) and EP-Q due to different
augmentation strategies.



Fig. 6: Encoder architecture of EP variants.

Fig. 7: Decoder architectures of EP-F, EP-Q and EP-noAug.

The embedded agent features can be decoded in two ways:
(1) For multi-modal prediction, the agent token T a is firstly
projected to multiple modes and substantially decoded to
predicted states spred and probabilities p for each mode.
(2) For uni-modal prediction, the agent token T a is directly
decoded to the predicted states of a single mode.

Consider the k-th mode of i-th agent, we concatenate
the tracked and predicted states as the vector si,k =

[ptrack
i,0 ,ppred

i,k,30,v
pred
i,k,30,a

pred
i,k,30,p

pred
i,k,60,v

pred
i,k,60, a

pred
i,k,60], si,k ∈

R14, where ptrack
i,0 denotes the tracked position at current

time step, ppred
i,k,30,v

pred
i,k,30,a

pred
i,k,30 are the predicted position,

velocity and acceleration at 3s (30 steps) in the future,
respectively. ppred

i,k,60,v
pred
i,k,60, a

pred
i,k,60 are the predicted

position, velocity and acceleration at 6s (60 steps) in the
future, respectively.

We follow the same notation as in [15] and form

the monomial basis functions as a vector ϕ(tm) ∈ R7

by concatenation ϕ(tm) = [ϕ0(tm), · · · , ϕ6(tm)]⊤, where
tm denotes the timestamp at m-th step in the future.
The derivatives of the monomial basis function ϕ̇(tm)
and ϕ̈(tm) can be acquired by incorporating the lin-
ear derivative operator D ∈ R7×7 mentioned in [14].
We construct the 14 × 14 observation matrix H =
[ϕ(t0),ϕ(t30), ϕ̇(t30), ϕ̈(t30),ϕ(t60), ϕ̇(t60), ϕ̈(t60)]

⊤⊗ I2,
where I2 is a 2 × 2 identity matrix and ⊗ denotes
the Kronecker product. The trajectory parameters ωi,k

of the k-th predicted mode are expressed as ωpred
i,k =

(H⊤H)−1H⊤si,k.

B. Training Loss

We employ minADE6 as regression loss lreg,multi and
weighted average displacement error, with the weight of
predicted probability p, as classification loss lcls,multi for
multi-modal prediction. We calculate average displacement
error as regression loss for uni-modal prediction lreg,uni.
Thus, the training losses of EP variants are expressed as:

lEP−F =lreg,multi
focal + lcls,multi

focal + lreg,uninon focal

lEP−Q =lreg,multi
all + lcls,multi

all

lEP−noAug =lreg,multi
focal + lcls,multi

focal

(1)

where sub-indices ”focal,” ”non-focal,” and ”all” refer to the
focal agent, non-focal agents, and all agents, respectively.

C. Experiment Settings

We report the settings of EP variants in Table V. Note that
the batch size and number of epochs are designed to ensure
the same training iterations for all EP variants.

TABLE V: Settings for EP Variants

model EP-F & EP-noAug EP-Q
hidden dimension D 64

optimizer Adam
learning rate 1e-3 5e-4

learning rate schedule cosine
batch size 64 (128 w flip) 32

training epochs 128 64
warmup iterations 6e4

dropout 0.2


