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Abstract
Exploration in sparse reward reinforcement learn-
ing remains an open challenge. Many state-of-
the-art methods use intrinsic motivation to com-
plement the sparse extrinsic reward signal, giv-
ing the agent more opportunities to receive feed-
back during exploration. Commonly these sig-
nals are added as bonus rewards, which results
in a mixture policy that neither conducts explo-
ration nor task fulfillment resolutely. In this paper,
we instead learn separate intrinsic and extrinsic
task policies and schedule between these differ-
ent drives to accelerate exploration and stabilize
learning. Moreover, we introduce a new type of
intrinsic reward denoted as successor feature con-
trol (SFC), which is general and not task-specific.
It takes into account statistics over complete tra-
jectories and thus differs from previous meth-
ods that only use local information to evaluate
intrinsic motivation. We evaluate our proposed
scheduled intrinsic drive (SID) agent in VizDoom
with pure visual inputs, and show a greatly im-
proved exploration efficiency with SFC and the
hierarchical usage of the intrinsic drives (video:
https://youtu.be/b0MbY3lUlEI).

1. Introduction
With deep networks as powerful function approximators,
deep reinforcement learning (DRL) has shown great poten-
tial (Mnih et al., 2015; 2016; Schulman et al., 2017; Horgan
et al., 2018). However, the success of DRL often relies
on carefully shaped dense extrinsic reward signals, which
requires substantial domain knowledge.

In this paper, we consider terminal reward RL settings,
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where a signal is only given when the final goal is achieved.
When learning with only an extrinsic terminal reward in-
dicating the task at hand, intelligent agents are given the
opportunity to potentially discover optimal solutions even
out of the scope of the well established domain knowledge.

However, in many real-world problems defining a task only
by a terminal reward means that the learning signal can be
extremely sparse. The RL agent would have no indication
about what task to accomplish until it receives the terminal
reward for the first time by chance. Therefore in those sce-
narios guided and structured exploration is crucial, which is
where intrinsically-motivated exploration (Oudeyer & Ka-
plan, 2008; Schmidhuber, 2010) has recently gained great
success (Pathak et al., 2017; Burda et al., 2018b). Most
commonly in current state-of-the-art approaches, an intrin-
sic reward is added as a reward bonus to the extrinsic reward.
Maximizing this combined reward signal, however, results
in a mixture policy that neither acts greedily with regard
to extrinsic reward maximization nor to exploration. Fur-
thermore, the non-stationary nature of the intrinsic signals
could potentially lead to unstable learning on the combined
reward. In addition, current state-of-the-art methods have
been mostly looking at local information calculated out of
1-step lookahead for the estimation of the intrinsic rewards,
e.g. one step prediction error (Pathak et al., 2017), or net-
work distillation error of the next state (Burda et al., 2018b).
Although those intrinsic signals can be propagated back to
earlier states with temporal difference (TD) learning, it is
not clear that this results in optimal long-term exploration.
We seek to address the aforementioned issues as follows:

1. We propose a hierarchical agent scheduled intrinsic
drive (SID) that focuses on one motivation at a time:
It learns two separate policies which maximize the ex-
trinsic and intrinsic rewards respectively. A high-level
scheduler periodically selects to follow either policy
to gather experiences. Disentangling the two policies
allows the agent to faithfully conduct either pure ex-
ploration or pure extrinsic task fulfillment. Moreover,
scheduling (even within an episode) inexplicitely in-
creases the behavior policy space exponentially, which
drastically differs from previous methods where the
behavior policy could only change slowly due to the
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incremental nature of TD learning.

2. We introduce successor feature control (SFC), a novel
intrinsic reward that is based on the concept of succes-
sor features. This feature representation characterizes
states through the features of all its successor states in-
stead of looking at local information only. This implic-
itly makes our method temporarily extended, which en-
ables more structured and far-sighted exploration that
is crucial in exploration-challenging environments.

We note that both the proposed intrinsic reward SFC and
the hierarchical exploration framework SID are without
any task-specific components, and can be incorporated into
existing DRL methods with minimal computation overhead.

2. Methods
We use the RL framework for learning and decision-making
under uncertainty. In order to encode long-term statistics
into the design of intrinsic rewards for far-sighted explo-
ration, we build on the formulation of successor represen-
tion (SR), which introduces a temporarily extended view of
the states. Dayan (1993) introduced the idea of represent-
ing a state s by the occupancies of all other states from a
process starting in s following a fixed policy π, where the
occupancies denote the average number of time steps the
process stays in each state per episode. Successor features
(SF) extend the concept to an arbitrary feature embedding
φ : S → Rm. For a fixed policy π and embedding φ the SF
is defined by the |m|-dimensional vector

ψπ,φ(s) := Eπ

[ ∞∑
t=0

γtφ(St)
∣∣∣S0 = s

]
. (1)

Analogously, the SF represent the average discounted fea-
ture activations, when starting in s and following π.

SF have several interesting properties which make them ap-
pealing as a basis for an intrinsic reward signal: 1) They can
be learned even in the absence of extrinsic rewards and with-
out learning a transition model, they combine advantages of
model-based and model-free RL (Stachenfeld et al., 2014);
2) They can be learned via computationally efficient TD; 3)
They capture the expected feature activations for complete
episodes. Therefore they contain information even of spa-
tially and temporarily distant states which might help for
effective far-sighted exploration. Given the discussion, we
introduce the successor distance (SD) metric that measures
the distance between states by the similarity of their SF

dπ,φ(s, s′) := ||ψπ,φ(s)− ψπ,φ(s′)||2. (2)

This definition bases on a well know approach in distance
metric learning that defines distances by dW (x1, x2)2 =

Figure 1. Illustrations of SD and SFC in a grid world with three
rooms, when the SF are learned by a random walk (φ as one-hot
encoding; γ = 0.98). Left: The SD (Eq. 2) of each state to a fixed
anchor state (Anchor marked by ×) Right: The maximal SFC (Eq.
3) obtained from each state via a 1-step transition.

(x1 − x2)TW (x1 − x2). This can be seen by identifying
the feature embedding with the m × |S| dimensional ma-
trix Φ(i, j) := φ(sj)i and SR with the |S| × |S| matrix
Ψπ(i, j) := ψπ(si, sj). Then for W = ΨT

πΦTΦΨπ the
distance measures dπ and dW are equal. W is symmetric
and positive semi-definite thus dW defines a pseudometric.

In Fig.1 (left), we illustrate the SD in a grid world with three
rooms, when the SF were learned using a random walk. In
this case, the SD between states correlates roughly to the
length of the shortest path from each state to the anchor.
Most notably is that the SD increases substantially when
crossing rooms. When starting from the anchor state with
a random policy, it is relatively unlikely for the agent to
enter the other two rooms; thus for a pair of states with a
fixed spatial distance, their SD is higher when they locate
in different rooms than in the same room. So the SD also
captures the connectivity in the state space.

2.1. Successor Feature Control

Using this metric to evaluate the intrinsic motivation, one
choice would be to use the SD to a fixed anchor state as
the intrinsic reward, which depends heavily on the anchor
position. Even when a sensible choice for the anchor can be
found, e.g. the initial state of an episode, the SDs of distant
states from the anchor assimilate. To circumvent this, we
define the intrinsic reward successor feature control (SFC)
as the squared SD of a pair of consecutive states

Rsfc
t+1 := ‖ψπ,φ(St+1)− ψπ,φ(St)‖22 . (3)

A high SFC reward indicates a big change in the future state
occupancies when π is followed. We argue this big change
is a strong indicator of bottleneck states, since in bottlenecks
a minor change in the action selection can lead to a vastly
different trajectory being taken. This is especially true for
highly stochastic policies. Fig.1 (right) shows that those
highly rewarding states under SFC and the true bottlenecks
agree, which can be valuable for exploration.
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Another valuable property of SFC is that it adapts in very
meaningful ways that lead to efficient non-stationary explo-
ration policies, when the transitions gathered by a policy
maximizing the SFC reward is used to update the SF itself.
Intuitively the SFC reward and the SD update pull in oppo-
site directions. This can be seen by looking at the SD before
and after updating the SF with a transition from s to s′. Tak-
ing this transition effectively reduced the SD between s and
s′, because the SF of s are pushed to the direction of the SF
of s′ (the successors of s′ are the successors of s as well).
Therefore the SFC of a transition would be reduced after
this transition is taken, making the agent inclined to take the
same transition again (at least not immediately). Thus SFC
has similarities with count-based exploration bonuses, but
has a straight forward extension to deep learning.

2.2. Scheduled Intrinsic Drive

Having proposed the intrinsic reward SFC, now we propose
a hierarchical take on intrinsically motivated exploration.

When learning optimal value functions or optimal policies
via TD or policy gradient with deep function approximators,
optimizing with algorithms such as gradient descent means
that the policy would only evolve incrementally: It is nec-
essary that the TD-target values do not change drastically
over a short period of time to guarantee that the gradient
updates remain meaningful. The common practice of utiliz-
ing a target network in off-policy DRL (Mnih et al., 2015)
stabilizes the update but on the other hand makes the policy
adapt even more incrementally over each step.

But intrinsically motivated exploration, or exploration in
general, might benefit from an opposite treatment of the
policy update. This is because the intrinsic reward is non-
stationary by nature, as well as the fact that the exploration
policy should reflect the optimal strategy corresponding to
the current stage of learning, and thus is also non-stationary.

With the commonly adopted way of using intrinsic reward
as a bonus to the extrinsic reward and train a mixture pol-
icy on top, exploration would be a balancing act between
the incrementally updated target values for stable learning
and the dynamically adapted intrinsic signals for efficient
exploration. Moreover, neither the extrinsic nor the intrinsic
signal is followed for an extended amount of time.

Therefore, we propose to address this issue with a hierar-
chical approach that by design has slowly changing target
values while still allowing drastic behavior changes. The
idea is to learn not a single, but multiple policies, with each
one optimizing on a different reward function. To be more
specific, we assume to have N tasks T ∈ T (e.g. N = 2
and T = {TE ,TI} where TE denotes the extrinsic task
and TI the intrinsic task) defined by N reward functions
(e.g. RE and RI ) that share the state and action space. The

optimal policy for each of these N different MDPs can be
learned with arbitrary off-policy DRL algorithms. During
each episode, a high-level scheduler periodically selects a
policy for the agent to follow to gather experience, and each
policy is trained with all experience collected following
those N different policies.

By allowing the agent to follow one motivation at a time, it
is possible to have a pool of N different behavior policies
without creating unstable targets for off-policy learning. By
scheduling M times even during an episode, we implicitly
increase the behavior policy space by exponential to NM

for a single episode (e.g. for N = 2 and M = 8 the be-
havior policy space could go up to 256). We investigated
several types of high-level schedulers (Appendix G), how-
ever, none of them consistently outperforms a random one.
We suspect the reason why a random scheduler already per-
forms very well under the SID framework, is that a highly
stochastic scheduling can be beneficial to make full use of
the big behavior policy space. Moreover, disentangling the
extrinsic and intrinsic policy strictly separates stationary and
non-stationary behaviors, and the different sub-objectives
would each be allocated with its own interaction time, such
that extrinsic reward maximization and exploration do not
distract each other.

We emphasize that our proposed framework can be applied
with any off-policy algorithms, and is directly applicable to
settings with multiple extrinsic or intrinsic tasks. We present
in detail an instantiation of our proposed SID framework
when using Ape-X DQN as a base off-policy DRL algorithm
(Horgan et al., 2018), with SFC as the intrinsic reward in
Appendix D, which is used across all our experiments.

3. Experiments
We evaluate our proposed intrinsic reward SFC and the hier-
archical framework of intrinsic motivation SID in VizDoom
(Kempka et al., 2016). Throughout all experiments, agents
receive as input only raw pixels with no additional domain
knowledge or task specific information. We mainly compare
the following agent configurations: M: Ape-X DQN with 8
actors, train with only the extrinsic main task reward; ICM:
train a single policy with the ICM reward bonus (Pathak
et al., 2017); RND: train a single policy with the RND re-
ward bonus (Burda et al., 2018b); Ours: with our proposed
SID framework, schedule between following the extrinsic
main task policy and the intrinsic policy trained with our
proposed SFC reward.

We carried out an ablation study, where we compare the
performance of an agent with intrinsic and extrinsic reward
summed up, to the corresponding SID agent for each intrin-
sic reward type (ICM, RND, SFC). We present the plots and
discussions in Appendix B.
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(a) MyWay-
Home

(b) FlytrapEscape

(c) Corridor (d) Exit (e) Wing (f) Goal

Figure 2. VizDoom environments we evaluated on. 2a and 2b
show the top-down views of MyWayHome and FlytrapEscape
with the same downscaling ratio, with red dots marking the starting
locations, green dots indicating the goal locations; 2c and 2d to
2f show exemplary first-person views captured from the marked
poses (blue dots with arrows) from those two maps respectively.

For the intrinsic reward normalization and the scaling for
the extrinsic and intrinsic rewards we do a parameter sweep
for each environment and choose the best setting for each
agent. We notice that our scheduling agent is much less
sensitive to different scalings than agents with added reward
bonus. Since our proposed SID setup requires an off-policy
algorithm to learn from experiences generated by follow-
ing different policies, we implement all the agents under
the Ape-X DQN framework (Horgan et al., 2018). After a
parameter sweep we set the number of scheduled tasks per
episode to M = 8 for our agent in all experiments, meaning
each episode is divided into up to 8 sub-episodes, and for
each of which either the extrinsic or the intrinsic policy is
sampled as the behavior policy. Appendix C,E, contain ad-
ditional experimental setup and model architecture details.

We start by verifying our implementation of the baseline
algorithms in ”DoomMyWayHome” which was previously
used in several state-of-the-art intrinsic motivation papers
(Pathak et al., 2017; Savinov et al., 2018). The agent needs

Figure 3. Extrinsic rewards per episode obtained in MyWayHome.
Each plot shows the mean with ±1 standard deviation over 3
non-tuned random seeds.

Figure 4. Extrinsic rewards per episode obtained in FlytrapEscape.
Each plot shows the mean with ±1 standard deviation over 3
non-tuned random seeds.

to navigate based only on first-person view visual inputs
through 8 rooms connected by corridors (Fig.2a), each with
a distinct texture (Fig.2c). The experimental results are
shown in Fig.3. Since our basic RL algorithm is doing off-
policy learning, it has relatively decent random exploration
capabilities. We see that the M agent is able to solve the task
sometimes without any intrinsically generated motivations,
but that all intrinsic motivation types help to solve the task
more reliably and speed up the learning. Our method solve
the task the fastest, but also ICM and RND learn to reach
the goal reliably and efficiently.

We wanted to test the agents on a more difficult VizDoom
map where structured exploration would be of vital impor-
tance. We thus designed a new map which scales up the
navigation task of MyWayHome. Inspired by how flytraps
catch insects, we design the layout of the rooms in a geomet-
rically challenging way that escaping from one room to the
next with random actions is extremely unlikely. We show the
layout of MyWayHome (Fig.2a) and FlytrapEscape (Fig.2b)
with the same downscaling ratio. The maze consists of 4
rooms separated by V-shaped walls pointing inwards the
rooms. The small exists of each room is located at the junc-
tion of the V-shape, which is extremely difficult to maneuver
into without a sequence of precise movements. As in the
MyWayHome task, in each episode, the agent starts from
the red dot shown in Fig.2b with a random orientation. An
episode terminates if the final goal is reached and the agent
will receive a reward of +1, or if a maximum episode steps
of 10,000 (2100 for MyWayHome) is reached. The task is
to escape the fourth room.

The experimental results on FlytrapEscape are shown in
Fig.4. Neither M nor RND manages to learn any useful
policies. ICM solves the task in sometimes, while we can
clearly observe that our method efficiently explores the map
and reliably learns how to navigate to the goal.

Visualization of the learned SF in FlytrapEscape, additional
experiments (DeepMind Lab (Beattie et al., 2016), Deep-
Mind Control Suite (Tassa et al., 2018)), ablation studies
and further analysis are presented in the Appendix.
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A. Appendix: Additional Experiments
We conducted additional sets of experiments on two other
domains that highlight the exploration capabilities of our
proposed agent under distractions as well as its generality.

A.1. DeepMind Lab: AppleDistractions

In the second experiment, we set out to evaluate if the agents
would be able to reliably collect the faraway big reward in
the presence of small nearby distractive rewards. For this
experiment we use the 3D visual navigation simulator of
DeepMind Lab (Beattie et al., 2016). We constructed a chal-
lenging level ”AppleDistractions” (Fig.11) with a maximum
episode length of 1350. In this level, the agent starts in the
middle of the map (blue square) and can follow either of
the two corridors. Each corridor has multiple sections and
each section consists of two dead-ends and an entry to next
section. Each section has different randomly generated floor
and wall textures. One of the corridors (left) gives a small
reward of 0.05 for each apple collected, while the other one
(right) contains a single big reward of 1 at the end of its last
section. The optimal policy would be to go for the single
faraway big reward. But since the small apple rewards are
much closer to the spawning location of the agent, the chal-
lenge here is to still explore other areas sufficiently often so
that the optimal solution could be recovered.

The results are presented in Fig.5 (top). Our method re-
ceived on average the highest rewards and is the only method
that learns to navigate to the large reward in every run. The
baseline methods get easily distracted by the small short-
term rewards and do not reliably learn to navigate away
from the distractions. With a separate policy for intrinsic
motivation the agent can for some time interval completely
”forget” about the extrinsic reward and purely explore, since
it does not get distracted by the easily reachable apple re-
wards and can efficiently learn to explore the whole map.
In the meanwhile the extrinsic policy can simultaneously
learn from the new experiences and might learn about the
final goal discovered by the exploration policy. This high-
lights a big advantage of scheduling over bonus rewards,
that it reduces the probability of converging to bad local
optimums. In Appendix B we further showed that SID is
generally applicable and also helps ICM and RND in this
task. Additional details about the environment are given in
Appendix E.2.

A.2. DeepMind Control Suite: Cartpole

To show that our methods can be used in domains other than
first-person visual navigation, we evaluate on the classic
control task ”carpole: swingup sparse” (DeepMind Control
Suite (Tassa et al., 2018)), using third-person view images
as inputs (Fig.13) The pole starts pointing down and the

Figure 5. Extrinsic rewards per episode obtained in AppleDistrac-
tions (top) and Cartpole (bottom). Each plot shows the mean with
±1 standard derivation over 3 non-tuned random seeds. Top: Each
agent is evaluated on the same 3 sets of random floor and wall
textures, with 3 non-tuned environment seeds (Appx.A).

agent receives a single terminal reward of +1 for swinging
up the unactuated pole using only horizontal forces on the
cart. Additional details are presented in Appendix E.3. The
results are shown in Fig.5 (bottom). Compared to the pre-
vious tasks, it is easy enough to be solved without intrinsic
motivation, but we can see also that all intrinsic motiva-
tion methods significantly reduce the interaction time. Our
method still outperforms other agents in this third-person
view classic ontrol domain, and even in the absence of clear
bottlenecks. This shows its general applicability, but since
the task is relatively less challenging for exploration, the
performance gain is not as substantial as the previous exper-
iments.

B. Appendix: Ablation Study
We have conducted ablation studies for all the three sets of
environments. We mainly compare the performance of the
following agent configurations:

• Three reward bonus agents M+ICM, M+RND,
M+SFC:
Add the intrinsic reward of ICM (Pathak et al., 2017),
RND (Burda et al., 2018b) or our proposed SFC re-
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Figure 6. Ablation study results for AppleDistractions (Appx.B).

spectively as a bonus to the extrinsic main task reward
and train a mixture policy on this combined reward
signal. We note that the M+ICM and M+RND agent
in this section corresponds to the ICM and RND agent
in all other sections respectively.

• Three SID agents SID (M, ICM), SID (M, RND),
SID (M, SFC):
Schedule between following the extrinsic main task
policy and the intrinsic policy trained with the ICM,
RND or our proposed SFC reward respectively. We
note that the SID (M, SFC) agent in this section corre-
sponds to the Ours agent in all other sections.

We note that except for M+ICM and M+RND, all other
agents consist of our proposed algorithms (SFC or SID or
both).

In Fig.6, we present the ablation study results for AppleDis-
tractions. Our SID(M, SFC) agent received on average
the highest rewards. Furthermore, we see that scheduling
helped both ICM and SFC to find the goal and not settle for
the small rewards, and SID also helps improve the perfor-
mance of RND. The respective reward bonus counterparts
of the three SID agents were more be attracted to the small
nearby rewards. This behavior is expected: By scheduling,
the intrinsic policy of the SID agent is assigned with its
own interaction time with the environment, during which it
could completely ”forget” about the extrinsic rewards. The
agent then has a much higher probability of discovering the
faraway big reward, thus escaping the distractions of the
nearby small rewards. Once the intrinsic policy collects
these experiences of the big reward, the extrinsic policy can
immediately learn from those since both policies share the
same replay buffer.

In Fig.7, we present the ablation study results for Fly-
trapEscape. The agents with the ICM component perform
poorly. Only 1 run of M+ICM learned to navigate to the
goal, while the scheduling agent SID(M,ICM) did not solve
the task even once. But for the two SFC agents, the schedul-

Figure 7. Ablation study results for FlytrapEscape (Appx.B).

ing greatly improves the performance. Although the reward
bonus agent M+SFC was not successful in every run, the
SID(M,SFC) agent solved the FlytrapEscape in 3 out of 3
runs. We hypothesize the reason for the superior perfor-
mance of SID(M,SFC) compared to M+SFC could be the
following: Before seeing the final goal for the first time,
the M+SFC agent is essentially learning purely on the SFC
reward, which is equivalent to the intrinsic policy of the
scheduling SID(M,SFC) agent. Since SFC might preferably
go to bottleneck states as the difference between the SF
of the two neighboring states are expected to be relatively
larger for those states . Since the extrinsic policy is doing
random exploration before receiving any reward signal, it
could be a good candidate to explore the next new room
from the current bottleneck state onwards. Then the SFs
of the new room will be learned when it is being explored,
which would then guide the agent to the next bottleneck
regions. Thus the SID(M,SFC) agent could efficiently ex-
plore from bottleneck to bottleneck, while the M+SFC agent
could not be able to benefit from the two different behaviors
under the extrinsic and intrinsic rewards and could oscillate
around bottleneck states. On the other hand, sheduling did
not help ICM or RND. A reason could be that ICM or RND
is not especially attracted by bottleneck states so it does
not help exploration if the agent spends half of the time

Figure 8. Ablation study results for Cartpole (Appx.B).
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acting randomly as the extrinsic policy had no reward yet
to learn from. Also since the FlytrapEscape environment is
extremely exploration-challenging, the temporally extended
view of our proposed SFC might of vital importance to
guide efficient exploration.

In Fig.8, we present the ablation study results for Cartpole.
We can observe that SID helps to improve the performance
of both ICM and RND. As for SFC, although the reward
bonus agent learns a bit faster than the SID agent, we note
that actually all the three SID agent converge to more stable
policies, while the reward bonus agents tend to oscillate
around the optimal return.

C. Appendix: Implementation
This section describes implementation details and design
choices. The backbone of our algorithm implementation is
presented in Appendix D.

C.1. Ape-X DQN

Since our algorithm requires an off-policy learning strategy,
and in consideration for faster learning and less computation
overhead, we use the state-of-the-art off-policy algorithm
Ape-X DQN (Horgan et al., 2018) with the K-step target
(K = 5) for bootstraping without off-policy correction

yt =

k=K∑
k=1

γk−1Rt+k+

γK max q(st+K , argmax
a′

q(st+K , a
′; θ−); θ), (4)

where θ− denotes the target network parameters.

We chose the number of actors the be the highest the hard-
ware supported, which was 8. To adapt the ε settings from
the 360 actors in the Ape-X DQN to our setting of N = 8
actors, we set a fixed εi for each actor i ∈ {1, . . . , 8} as

εi = ε1+
(i−1) 360

N
360−1 α, (5)

where α = 7 and ε = 0.4 are set as in the original work.

C.2. Prioritized Experience Replay

For computational efficiency, we implement our own version
of the prioritized experience replay. We split the replay
buffer into two, with size of 40, 000 and 10, 000. Every
transition is pushed to the first one, while in the second
one only transitions are pushed on which a very large TD-
error is computed. We store a running estimate of the mean
and the standard deviation of the TD-errors and if for a
transition the error is larger than the mean plus two times the
standard deviation, the transition is pushed. In the learner
a batch of size 128 consists of 96 transitions drawn from

the normal replay buffer and 32 are drawn from the one that
stores transition with high TD-error, which as a result have
relatively seen a higher chance of being picked.

C.3. Successor Feature Learning

We note that previous works for learning the deep SF have
included an auxiliary task of reconstruction on the features
φ (Kulkarni et al., 2016a; Zhang et al., 2017), while in this
work we investigate learning ψ without this extra recon-
struction stream. Instead of adapting the features φ while
learning the successor features ψ, we fix the randomly ini-
tialized φ. This design follows the intuition that since SF
(ψ) estimates the expectation of features (φ) under the tran-
sition dynamics and the policy being followed, more stable
learning of the SF could be achieved if the features are kept
fixed. The SF are learned via the following update rule

ψπ,φ(St)← ψπ,φ(St)+α
[
φ(St+K)+γψπ(St+K)−ψπ(St)

]
.

(6)

The SF are learned from the same replay buffer as for train-
ing the Q-Net. Since our base algorithm is K-step Ape-X,
and we follow the memory efficient implementation of the
replay buffer as suggested in Ape-X, we only have access
to K-step experience tuples (K = 5) for learning the SF.
Therefore we calculate the intrinsic reward by applying the
canonical extension of the SFC reward formulation (Eq.3)
to K-step transitions

Rsfc
t+K = ‖ψπ,φ(St+K)− ψπ,φ(St)‖22 . (7)

The behaviour policy π associated with the SF is not given
explicitly, but since the SF are learned from the replay buffer
via TD learning, it is a mixture of current and past behaviour
policies from all actors.

C.4. Reward Normalization

Most network parameters are shared for estimating the ex-
pected discounted return of the intrinsic and extrinsic re-
wards. The scale of the rewards has a big influence on the
scale of the gradients for the network parameters. Hence, it
is important that the rewards are roughly on the same scale,
otherwise effectively different learning rates are applied.
The loss of the network comes from the regression on the
Q-values, which approximate the expected return. So our
normalization method aims to bring the discounted return
of both tasks into the same range. To do so we first nor-
malize the intrinsic rewards by dividing them by a running
estimate of their standard deviation. We also keep a running
estimate of the mean of this normalized reward and denote
it r′I . Since every time step an intrinsic reward is received
we estimate the discounted return via the geometric series.
We scale the extrinsic task reward that is always in {0, 1}
with η r′I

1−γI , where γI is the discount rate for the intrinsic
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Figure 9. Model architecture for the SID (M, SFC) agent. Com-
ponents with color yellow are randomly intialized and not trained
during learning.

reward. Furthermore, η is a hyperparameter which takes
into account that for Q-values from states more distant to
the goal the reward is discounted with the discount rate for
the extrinsic reward depending on how far away that state is.
In our experiments we set η = 3.

C.5. Hyperparameter Search

We did the same search for hyperparameters and normaliza-
tion technique for all algorithms that include an intrinsic re-
ward and found the setting described in Sec.C.4 to work the
best for all of them. The algorithms were evaluated on the
FlytrapEscape. For η we tried the values in {0.3, 1, 3, 10}.
We also tried to not normalize the rewards and just scale the
intrinsic reward. To scale the intrinsic reward we tried the
values {0.001, 0.01, 0.1, 1}. However, we found that as the
scale of the intrinsic rewards is not the same over the whole
training process this approach does not work well. We also
tried to normalize the intrinsic rewards by dividing it by a
running estimate of its standard deviation and then scale this
quantity with a value in {0.01, 0.1, 1}.

C.6. Model Architecture

We use the same model architecture as depicted in Fig. 9
across all 3 sets of experiments.

ReLU activations are added after every layer except for the
last layers of each dashed blocks in the above figure. For
the experiments with the ICM (Pathak et al., 2017), we
added BatchNorm (Ioffe & Szegedy, 2015) before activa-
tion for the embedding of the ICM module following the
original code released by the authors. Code is implemented
in pytorch (Paszke et al., 2017).

D. Appendix: Algorithm
This section describes an instantiation of our proposed SID
framework when using Ape-X DQN as a basic off-policy

Figure 10. Depiction of the algorithm presented in Appx.D.

DRL algorithm (Horgan et al., 2018) with SFC as the intrin-
sic reward. The algorithm is composed of:

1. Q-Net {θϕ, θE, θI}: Contains a shared embedding θϕ
and two Q-value output heads θE (extrinsic) and θI
(intrinsic).

2. SF-Net {θφ, θψ}: Contains an embedding θφ and a
successor feature head θψ. θφ is initialized randomly
and kept fixed during training. The output of SF-Net is
used to calculate the SFC intrinsic reward (Eq.7).

3. A high-level scheduler: Instantiated in each actor, se-
lects which policy to follow (extrinsic or intrinsic) af-
ter a fixed number of environment steps (max episode
length/M ). The sheduler randomly picks one of the
tasks with equal probability.

4. 8 parallel actors: Each actor instantiates its own
copy of the environment, periodically copies the latest
model from the learner. We learn from K-step targets
(K = 5), so each actor at each environment step stores
(st−K , at−K ,

∑K
k=1 γ

k−1rt−K+k, st, terminalt) into
a shared replay buffer. Each actor will act accord-
ing to either the extrinsic or the intrinsic head based on
the current task selected by its scheduler.

5. 1 learner: Learns the Q-Net (θE and θI are learned
with the extrinsic and intrinsic reward respectively)
and the SF-Net (SF are learned via Eq.6) from samples
from the same shared replay buffer, which contains all
experiences collected from following different policies.

We depict this algorithm instance in Fig.10.
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Figure 11. Top-down view of the AppleDistraction enviroment.
The agents starts in the middle of the map (the blue square) and
receives a reward of 0.05 for collecting apples (apple icon) and a
terminal reward of 1 for finding the goal (orange/red icon). For a
given enviroment seed, textures for each segment of the maze are
generated at random.

E. Appendix: Training Details
We use a batch size of 128 for all experiments the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of
1e− 4.

For all experiments we used a stack of 4 consecutive, pre-
processed observations as states.

For the first-person view experiments in VizDoom and Deep-
Mind Lab, we use an action repetition of 4, while for the
classic control experiment we did not apply action repetition.
In the text, we only refer to the actual environment steps
(e.g. before divided by 4).

E.1. Environment Settings: VizDoom

The VizDoom environment produces 320×240 RGB images
as observations. In a preprocessing step, we downscaled the
images to 84x84 pixels and converted them to grayscale.

For FlytrapEscape, we adopted the action space settings
from the MyWayHome task. The action space was given
by the following 5 actions: TURN LEFT, TURN RIGHT,
MOVE FORWARD, MOVE LEFT, MOVE RIGHT

E.2. Environment Settings: DeepMind Lab

We setup the DmLab environment to produce 84× 84 RGB
images as observations. In Fig.12 we show examplary obser-
vations of AppleDistractions. We preprocessed the images
by converting the observations to grayscale.

We used the predefined DmLab actions from (Espeholt et al.,
2018). The action space was given by the following 8 ac-
tions (no shooting setting): Forward, Backward, Strafe Left,
Strafe Right, Look Left, Look Right, Forward+Look Left,
Forward+Look Right.

(a) Dead end. (b) Entry. (c) Goal.

Figure 12. Exemplary first-person view observations captured in
the AppleDistractions environment.

E.3. Environment Settings: DeepMind Control Suite

We conducted the experiments for the classic control task
on the ’Cart-pole’ domain with the ’swingup sparse’ task
provided by the DeepMind Control Suite. Since our agents
needs a discrete action space and the control suite only
provides continuous action spaces, we discretized the sin-
gle action dimension. The set of actions was {-0.5, -0.25,
0, 0.25, 0.5}. We configured the environment to produce
84x84 RGB pixel-only observations from the 1st camera,
which is the only predefined camera that shows the full
cart and pole at all times. We further convert the images to
grey-scale and stack four consecutive frames as input to our
network. The episode length was 200 environment steps.

E.4. Infrastructure

To generate our results we used two machines that run
Ubuntu 16.04. Each machine has 4 GeForce Titan X (Pascal)
GPUs. On one machine we run 4 experiments in parallel,
each experiment on a separate GPU.

F. Appendix:Successor Distance Visualization
As an additional evaluation, we visualize the SF of our agent
that successfully learned to navigate to the goal (Fig.14).
We can see that the SD from each coordinate to the starting
position tends to grow as the geometric distance increases,
especially for those that locate on the pathways leading
to later rooms. This shows that the learned SD and the
geometric distance are in good agreement and that the SF
are learned as expected. Furthermore, we see big intensity

(a) Start (b) Swingup (c) Goal

Figure 13. Exemplary observations captured in the Cartpole envi-
ronment.
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Figure 14. Top-down projection of the SF of an agent after it
learned how to navigate to the goal on FlytrapEscape (Fig.2b). For
the purpose of visualization we discretized the map into 85× 330
grids and position the trained agent SID(M,SFC) at each grid, then
computed the successor features ψ for that location for each of the
4 orientations (0°, 90°, 180°, 270°), which resulted in a 4 × 512
matrix. We then calculated the l2-difference of this matrix with
a 4× 512 vector containing the successor features of the starting
position with the 4 different orientations. Shown in log-scale. The
evolution of the SF over time is shown in the accompanying video
https://youtu.be/b0MbY3lUlEI.

changes around the bottlenecks (the room entries) in the
heatmap, which also supports the hypothesis that SFC leads
the agent to bottleneck states. We believe this is the first
time that SF are shown to behave in a first-person view
environment as one would expect from its definition.

G. Appendix: Scheduler Designs
We investigated three types of high-level schedulers:

• Random scheduler: Sample a task from uniform distri-
bution every task steps.

• Switching scheduler: Sequentially switches between
extrinsic and intrinsic task.

• Macro-Q Scheduler: Learn a scheduler that learns
with macro actions and from sub-sampled experi-
ence tuples. In each actor, we keep an additional
local buffer that stores N + 1 subsampled experi-
ences: {st−Nm, . . . , st−2m, st−m, st}. Then at each
environment step, Besides the K-step experience tu-
ple mentioned above, we also store an additional
macro-transition {st−Nm, st} along with its sum of
discounted rewards to the shared replay buffer. This
macro-transition is paired with the current task as its
macro-action. The Macro-Q Scheduler is then learned
with an additional output head attached to θϕ (we also
tried θφ).

• Threshold-Q Scheduler: Selects task according to the
Q-value output of the extrinsic task head. For this
scheduler no additional learning is needed. It just se-
lects a task based on the current Q-value of the extrinsic
head θe. We tried the following selection strategies:

– Running mean: select intrinsic when the current
Q-value of the extrinsic head is below its running

mean, extrinsic otherwise
– Heuristic median: observing that the running

mean of the Q-values might not be a good statis-
tics for selecting tasks due to the very unevenly
distributed Q-values across the map, we choose
a fixed value that is around the median of the Q-
values (0.007), and choose intrinsic when below,
extrinsic otherwise

As we report in the paper, none of the above scheduler
choices consistently performs better across all environments
than a random scheduler. We leave this part to future work.

H. Related Work
Our work is connected to a range of DRL topics, includ-
ing intrinsic motivation, auxiliary tasks, successor repre-
sentation and hierarchical RL. Below we discuss the most
relevant.

H.1. Intrinsic Motivation and Auxiliary Tasks

Intrinsic motivation can be defined as agents conducting ac-
tions purely out of the satisfaction of its internal rewarding
system rather than the extrinsic rewards (Oudeyer & Kaplan,
2008; Schmidhuber, 2010). There exist various forms of
intrinsic motivation and they have achieved substaintial im-
provement in guiding exploration for DRL, in tasks where
extrinsic signals are sparse or missing altogether.

Curiosity, one of the most widely used kinds of intrinsic
motivation, is quantified by Pathak et al. (2017) as the 1-
step prediction error of the features of the next state made
by a forward dynamics model. Their ICM module has
been shown to work well in visual domains including first-
person view navigation. Since ICM is potentially suscep-
tible to stochastic transitions (Burda et al., 2018a), Burda
et al. (2018b) propose as a reward bonus the error of predict-
ing the features of the current state output by a randomly
initialized fixed embedding network. Another form of cu-
riosity, learning progress or the change in the prediction
error, has been connected to count-based exploration via a
pseudo-count (Bellemare et al., 2016; Ostrovski et al., 2017)
and has also been used as a reward bonus. Savinov et al.
(2018) propose to train a reachability network, which gives
out a reward based on whether the current state is reachable
within a certain amount of steps from any state in the cur-
rent episode. Similar to our proposed SFC, their intrinsic
motivation is related to choosing states that could lead to
novel trajectories. However we note that the reachability re-
ward bonus captures the novelty of states with regard to the
current episode, while our proposed SFC reward implicitly
captures statistics over the full distribution of policies that
have been followed, since the successor features are learned
using states sampled from all past experiences.

https://youtu.be/b0MbY3lUlEI
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Auxiliary tasks have been proposed for learning more rep-
resentative and distinguishable features. Mirowski et al.
(2016) add depth prediction and loop closure prediction as
auxiliary tasks for learning the features. Jaderberg et al.
(2016) learn separate policies for maximizing pixel changes
(pixel control) and activating units of a specific hidden layer
(feature control). However, their proposed UNREAL agent
never follows those auxiliary policies as they are only used
to learn more suitable features for the main extrinsic task.

H.2. Hierarchical RL

Various HRL approaches have been proposed (Kulkarni
et al., 2016a; Bacon et al., 2017; Vezhnevets et al., 2017;
Krishnan et al., 2017). In the context of intrinsic motivation,
feature control (Jaderberg et al., 2016) has been adopted into
a hierarchical setting (Dilokthanakul et al., 2017), in which
options are constructed for altering given features. However,
they report that a flat policy trained on the intrinsic bonus
achieves similar performance to the hierarchical agent.

Our hierarchical design is perhaps inspired mostly by the
work of Riedmiller et al. (2018). Unlike other HRL ap-
proaches that try to learn a set of options (Sutton et al.,
1999) to construct the optimal policy, their proposed SAC
agent aims to learn one flat policy that maximizes the ex-
trinsic reward. While SAC schedules between following
the extrinsic task and a set of pre-defined auxiliary tasks
such as maximizing touch sensor readings or translation
velocity, in this paper we investigate scheduling between
the extrinsic task and intrinsic motivation that is general and
not task-specific.

H.3. Successor Representation

The successor representation (SR) was first introduced to im-
prove generalization in TD learning (Dayan, 1993). While
previous works extended SR to the deep setting for better
generalized navigation and control algorithms across similar
environments and changing goals (Kulkarni et al., 2016b;
Barreto et al., 2017; Zhang et al., 2017), we focus on its
temporarily extended property to accelerate exploration.

SR has also been investigated under the options framework.
Machado et al. (2017); Tomar* et al. (2019) evaluate succes-
sor features with random policies to discover bottlenecks or
landmarks based on the clustering of such features. Options
are then learned to navigate to those sub-goals. However, it
remained unclear if the options framework would help in
sparse exploration setups.

When using SR to measure the intrinsic motivation, the most
relevant work to ours is that of Machado et al. (2018). They
also design a task-independent intrinsic reward based on SR,
however they rely on the concept of count-based exploration
and propose a reward bonus, that vastly differs from ours.

I. Appendix: Conclusion
In this paper, we investigate an alternative way of utilizing
intrinsic motivation for exploration in DRL. We propose
a hierarchical agent SID that schedules between following
extrinsic and intrinsic drives. Moreover, we propose a new
type of intrinsic reward SFC that is general and evaluates
the intrinsic motivation based on longer time horizons. We
conduct experiments in three sets of environments and show
that both our contributions SID and SFC help greatly in
improving exploration efficiency.

We consider many possible research directions that could
stem from this work, including designing more efficient
scheduling strategies, incorporating several intrinsic drives
(that are possibly orthogonal and complementary) instead
of only one into SID, testing our framework in other control
domains such as manipulation, and extending our evaluation
onto real robotics systems.


