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Self-Supervised Visual Terrain Classification from
Unsupervised Acoustic Feature Learning

Jannik Zürn1, Wolfram Burgard1,2, and Abhinav Valada1

Abstract—Mobile robots operating in unknown urban envi-
ronments encounter a wide range of complex terrains to which
they must adapt their planned trajectory for safe and efficient
navigation. Most existing approaches utilize supervised learning
to classify terrains from either an exteroceptive or a proprio-
ceptive sensor modality. However, this requires a tremendous
amount of manual labeling effort for each newly encountered
terrain as well as for variations of terrains caused by changing
environmental conditions. In this work, we propose a novel
terrain classification framework leveraging an unsupervised pro-
prioceptive classifier that learns from vehicle-terrain interaction
sounds to self-supervise an exteroceptive classifier for pixel-wise
semantic segmentation of images. To this end, we first learn a
discriminative embedding space for vehicle-terrain interaction
sounds from triplets of audio clips formed using visual features
of the corresponding terrain patches and cluster the resulting
embeddings. We subsequently use these clusters to label the
visual terrain patches by projecting the traversed tracks of
the robot into the camera images. Finally, we use the sparsely
labeled images to train our semantic segmentation network in
a weakly supervised manner. We present extensive quantitative
and qualitative results that demonstrate that our proprioceptive
terrain classifier exceeds the state-of-the-art among unsupervised
methods and our self-supervised exteroceptive semantic segmen-
tation model achieves a comparable performance to supervised
learning with manually labeled data.

I. INTRODUCTION

RECENT advances in robotics and machine learning
have enabled the deployment of autonomous robots in

challenging outdoor environments for complex tasks such as
autonomous driving, last mile delivery, and patrolling. Robots
operating in these environments encounter a wide range of
terrains from paved roads and cobble stones to unstructured dirt
roads and grass. It is essential for them to be able to reliably
classify and characterize these terrains for safe and efficient
navigation. This is an extremely challenging problem as the
visual appearance of outdoor terrain drastically changes over
the course of days and seasons, with variations in lighting due
to weather, precipitation, artificial light sources, dirt or snow on
the ground, among other factors. Therefore, robots should be
able to actively perceive the terrains and adapt their navigation
strategy as solely relying on pre-existing maps is insufficient.

These factors have motivated substantial research in learning
to classify terrains, both using exteroceptive [1, 2, 3] or proprio-
ceptive [4, 5, 6] sensor modalities. Proprioceptive sensors sense
terrain properties through the interaction of the robot with its
environment and their data can be used to train accurate terrain
classifiers [4]. Among the various proprioceptive modalities,
vehicle-terrain interaction sounds from mobile robots in partic-
ular have been shown to have highly distinctive features that

1Department of Computer Science, University of Freiburg, Germany
2Toyota Research Institute, Los Altos, USA.

Fig. 1: Our self-supervised approach enables a robot to classify urban terrains
without any manual labeling using an on-board camera and a microphone.
Our proposed unsupervised audio classifier automatically labels visual terrain
patches by projecting the traversed tracks into camera images. The resulting
sparsely labeled images are used to train a semantic segmentation network for
visually classifying new camera images in a pixel-wise manner.

strongly correlate with the underlying semantic terrain classes
and thereby enable fine-grained terrain classification [5, 7, 8].
Exteroceptive sensors, in contrast, sense the terrain from a
distance and enable a robot to classify its surroundings without
directly interacting with it. Learning from the combination of
proprioceptive and exteroceptive sensor modalities allows us
to associate terrain features in the vicinity of the robot to more
distant features that are ahead of the robot. We also reason that
it is extremely difficult to capture properties of all the different
terrains as well as their variations due to changing environ-
mental conditions, using just one modality. Recent works in
multimodal deep learning [9, 10, 11, 12] have demonstrated
the ability to learn robust complementary features which yield
superior performance in many learning tasks. We follow this
paradigm and leverage two diverse modalities, sound and vision,
to learn complementary features for robust terrain classification.

Most state-of-the-art learning methods require a significant
amount of data samples which are often arduous to obtain in
supervised learning settings where labels have to be manually
assigned to data samples. Moreover, these models tend to
degrade in performance once presented with data sampled
from a distribution that is not present in the training data. In
order to perform well on data from a new distribution, they
have to be retrained after repeated manual labeling which in
general is unsustainable for widespread deployment of robots.
Self-supervised learning allows the training data to be labeled
automatically by exploiting the correlations between different
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input signals thereby reducing the amount of manual labelling
work by a large margin. Furthermore, unsupervised audio clas-
sification eliminates the need to manually label audio samples.
We take a step towards lifelong learning for visual terrain clas-
sification by leveraging the fact that the distribution of terrain
sounds does not depend on the visual appearance of the terrain.
This enables us to employ our trained audio terrain classification
model in previously unseen visual perceptual conditions to
automatically label patches of terrain in images, in a completely
self-supervised manner. The visual classification model can
then be fine-tuned on the new training samples by leveraging
transfer learning to adapt to the new appearance conditions.

In this work, we present a novel self-supervised approach
to visual terrain classification by exploiting the supervisory
signal from an unsupervised proprioceptive terrain classifier
utilizing vehicle-terrain interaction sounds. Fig. 1 illustrates
our approach where our robot equipped with a camera and
a microphone traverses different terrains and captures both
sensor streams along its trajectory. The poses of the robot
recorded along the trajectory enables us to associate the visual
features of a patch of ground that is in front of the robot
initially with its corresponding auditory features when that
patch of ground is traversed by the robot. We split the audio
stream into small snippets and embed them into an embedding
space using metric learning. To this end, we propose a novel
triplet sampling method based on the visual features of the
respective terrain patches. This now enables the usage of triplet
loss formulations for metric learning without requiring ground
truth labels. We obtained the aforementioned visual features
from an off-the-shelf image classification model pre-trained
on the ImageNet dataset. To the best of our knowledge, our
work is the first to exploit embeddings from one modality
to form triplets for learning an embedding space for samples
from an extremely different modality. We interpret the resulting
clusters formed by the audio embeddings as labels for training a
weakly-supervised visual semantic terrain segmentation model.
We then employ this model for pixel-wise classification of
terrain that is in front of the robot and use this information for
trajectory planning.

In order to facilitate this work, we collected a large-scale
urban terrains dataset consisting of five terrain categories in
diverse environments at different times of the day and varying
weather conditions. We present extensive quantitative and qual-
itative evaluations of our framework that demonstrate that our
unsupervised proprioceptive terrain classifier achieves state-of-
the-art performance for unsupervised terrain classification from
vehicle-terrain interaction sounds and our self-supervised visual
terrain semantic segmentation model achieves a comparable
performance to supervised learning. More importantly, we also
show that exploiting the training signal from proprioceptive
terrain classification for self-supervised exteroceptive semantic
segmentation enables our robot to learn a robust terrain classi-
fication model that can adapt to changes in visual perception
caused by external sources such as illumination, time-of-day,
weather conditions or seasonal changes. Thereby taking a step
towards lifelong learning of traversability estimation.

In summary, the major contributions of this work are:
• A general terrain classification framework for mobile

robots that uses an unsupervised proprioceptive classifier

to self-supervise an exteroceptive classifier.
• A novel heuristic to form triplets for metric learning that

does not require ground truth labels but instead leverages
a complementary modality.

• A self-supervised visual semantic segmentation model
that learns from weakly labeled bird’s eye view images.

• The new Freiburg Terrains dataset consisting of more than
four hours of audio-video recordings of terrain traversals
tagged with SLAM poses.

• Extensive quantitative as well as qualitative evaluations
and ablation studies demonstrating the effectiveness of
our proposed framework.

The remainder of this paper is organized as follows. In Sec. II,
we discuss related work on self-supervised and semi-supervised
terrain classification using proprioceptive and exteroceptive
sensors. We then describe our pre-processing pipeline, followed
by our unsupervised acoustic feature learning approach and our
self-supervised visual terrain classification method in Sec. III.
In Sec. IV, we present extensive empirical evaluations with
ablation studies followed by a discussion in Sec. V.

II. RELATED WORK

Self-supervised learning of terrain classification and terrain
properties for mobile robots has been investigated intensively
in recent years. Early works by Sofman et al. [1] propose a
self-supervised online learning approach that relies on overhead
imagery such as satellite images to learn a traversability
costmap for outdoor off-road robots. Happold et al. [13] train
a neural network offline on hand-labeled geometric features
computed from stereo data for online traversability analysis
using the predictions of the trained network. Later works by
Hadsell et al. [2, 14] and Konolige et al. [3] demonstrated early
success in long-range terrain classification using a deep belief
network on the LAGR robot platform. Hadsell et al. [14] present
an obstacle detection and path detection approach for outdoor
environments based exclusively on stereo vision and self-
supervised learning. They trained a deep belief network on ter-
rain imagery using labels obtained from a short-range stereo vi-
sion classifier for differentiating between multiple traversability
classes such as Ground, Obstacle or Footline. Using the same
robot platform, Konolige et al. [3] create pixel-wise texture
statistics in a small neighborhood around each pixel. During
classification, each pixel is assigned to a cluster of histograms
with similar properties using the euclidean distance in histogram
space. However, these approaches have only been demonstrated
on a small number of terrain classes and they do not exploit
complementary proprioceptive modalities to improve accuracy.

The use of multimodal sensor data for self-supervised
learning has also been investigated in several works [15, 16,
4, 17, 18, 15, 19, 20]. Typically, proprioceptive modalities
such as vibrations are combined with exteroceptive modalities
such as visual images. Brooks et al. [4] use a proprioceptive
vibration sensor to classify the type of terrain their wheeled
robot traverses and an exteroceptive vision-based sensor to
classify terrain in the field of view in front of the robot.
Bekhti et al. [16] introduced a learning-free scheme to find
the correlation between exteroceptive image observations and
proprioceptive acceleration signals for the assessment of terrain
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maneuverability for mobile robots. They perform Canonical
Correlation Analysis to compare two groups of quantitative
variables to determine if they describe the same type of terrain.
Existing work in this area is primarily focused on exploiting
vibration-based sensors for proprioceptive terrain classification.
Vibration characteristics from terrains are often extremely
susceptible to shaking and vibrations from the robot platform
itself which often leads to misclassifications.

Previous works in metric learning [21, 22, 23] are targeted
towards learning easily clusterable embeddings using loss
functions that enable the neural encoders to embed inputs
with the same class close to each other and inputs with
different classes far from each other. The most common
attribute among them is that they propose a loss function that
encourages the network to learn favorable embedding spaces
that highly correlate with the ground truth labels. Therefore,
they rely on ground truth labeling for forming contrastive data
tuples that allow the network to learn such embeddings. Other
approaches [24] and the subsequent work by Gou et al. [25]
focus on improving the learned embedding spaces from an au-
toencoder by defining a centroid-based probability distribution
and minimizing its Kullback-Leibler divergence to an auxiliary
target distribution. This simultaneously improves clustering
assignment and the feature representations. They do not rely
on any ground truth data and their approach can be leveraged
in a plug-in fashion for improving given embeddings without
supervision. While these methods are capable of generating
embeddings that are more accurately clusterable than plain
autoencoders, they do not explore how complementary data
from a different modality can be incorporated into the model
training to improve the performance. Moreover, these methods
only improve the clustering accuracies of embeddings by a
small margin compared to plain autoencoders.

In recent years, deep learning based approaches to seman-
tically segment scenes have increasingly been leveraged for
visual terrain classification. Barnes et al. [26] use the trajectory
of a manually driven vehicle for self-supervised labeling of
urban scenes to detect drivable areas. The vehicle trajectory is
used for implicit labeling of pixels in a scene. Due to the lack
of additional semantic information, their approach is limited
to differentiating between a proposed path, drivable areas,
and obstacles. Hirose et al. [27] recently presented a semi-
supervised deep learning approach to traversability estimation
from fisheye camera images. They leverage Generative Adver-
sarial Networks to effectively predict whether the area seen in
the input images is safe for a robot to traverse. Nava et al. [20]
introduce a self-supervised approach to predict future outputs
of a short-range proximity sensor based on the current outputs
of a long-range sensor, thus, training a Convolutional Neural
Network (CNN) to accurately predict obstacles in the camera
images. More recently, Wellhausen et al. [19] proposed a
self-supervised terrain property learning method that uses
the proprioceptive force-torque signal of a quadrupedal robot
as a sparse label generator for the supervised training of a
CNN for semantic segmentation of camera images. The force-
torque signal of the robots legs at the foothold positions are
classified using a ground reactive score and serve as sparse
ground truth signals for supervised semantic segmentation.
While recent works have demonstrated progress towards self-

supervised terrain-classification, they either do not effectively
generalize to different classes [26] or do not leverage the
complementary nature of multimodal perception for different
terrain classes [19].

Inspired by these recent works, we demonstrate the benefits
of self-supervised multimodal terrain classification by fully
exploiting the complementary nature of proprioception and
exteroception. Specifically, our framework does not require any
manual labeling of data samples and we show that automatic
data collection with a robot coupled with the self-labeling
steadily improves the performance as well the robustness
of our model. More importantly, our work takes a step
towards lifelong learning of traversability estimation by reusing
our unsupervised audio classifier to adapt our visual terrain
classifier in adversary lighting conditions that are not present
in the training data.

III. TECHNICAL APPROACH

In this section, we detail our proposed self-supervised
terrain classification framework. Fig. 2 visualizes the overall
information flow in our system. While acquiring the images
and audio data, we tag each sample with the robot pose
obtained using our SLAM system [28]. We then project the
camera images into a birds-eye-view perspective and project
the path traversed by the robot in terms of its footprint into this
viewpoint. We transform the audio clips into a spectrogram
representation and embed them into an embedding space using
our proposaed Siamese Encoder with Reconstruction loss (SE-
R) on audio triplets that uses features in the visual domain for
triplet forming. Subsequently, we cluster the embeddings and
use the cluster indices to automatically label the corresponding
robot path segments in the birds-eye-view images. The resulting
labeled images serve as weakly labeled training data for the
semantic segmentation network. Note that the entire approach
is executed completely in an unsupervised manner. The cluster
indices can be used to indicate terrain labels such as Asphalt
and Grass or in terms of terrain properties.

In the rest of this section, we detail each of the aforemen-
tioned components of our framework. In Sec. III-A, we first
describe the audio pre-processing that we employ to convert
the raw audio signal into audio spectrograms. We then present
the approach to project the recorded robot path into the camera
frames in Sec. III-B. In the subsequent Sec. III-C, we detail our
novel Siamese Encoder variants for unsupervised clustering of
audio samples. Finally, in Sec. III-D, we describe our approach
to self-supervised semantic segmentation of camera images
using the weak labels obtained from the unsupervised audio
clustering.

A. Audio Preprocessing
We first split the audio stream into short clips of time

window length tw. We then convert each clip into its
spectrogram representation using the Short Time Fourier
Transform (STFT). Denoting x as the raw audio signal of
a clip, the discrete-time STFT generates a two-dimensional
representation of the signal as

STFT{x[n]}(m,ω) =
∞∑

n=−∞
x[n]w[n−m]e−jωn, (1)
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Fig. 2: Overview of our proposed self-supervised terrain classification framework. The upper part of the figure illustrates our novel Siamese Encoder with
Reconstruction loss (SE-R), while the lower part illustrates how the labels obtained from the SE-R are used to automatically annotate data for training the
semantic segmentation network. The camera images are first projected into a birds-eye-view perspective of the scene and the trajectory of the robot is projected
into this viewpoint. In our SE-R approach, using both the audio clips from the recorded terrain traversal and the corresponding patches of terrain recorded with
a camera, we embed each clip of the audio stream into an embedding space that is highly discriminative in terms of the underlying terrain class. This is
performed by forming triplets of audio samples using the visual similarity of the corresponding patches of ground obtained with a pre-trained feature extractor.
We then cluster the resulting audio embeddings and use the cluster indices as labels for self-supervised labeling. The resulting labeled images serve as a
weakly labeled training dataset for a semantic segmentation network for pixel-wise terrain classification.

where x[n] denotes the time-discrete signal and w[n] denotes
the window size for the Fast-Fourier-Transform. Finally, the
squared magnitude of the complex-valued STFT yields the
spectrogram representation of the audio signal.

B. Trajectory Projection Into Image Coordinates
We record the stream of monocular camera images from an

on-board camera and the corresponding audio stream of the
vehicle-terrain interaction sounds from a microphone mounted
near the wheel of our robot. We project the robot trajectory into
the image coordinates using the robot poses obtained using our
SLAM system [28]. In contrast to other works such as [19],
we additionally perform perspective warping of the camera
images in order to obtain a birds-eye view representation. The
robot trajectory is interpreted as a curve x ∈ R3. Denoting
the intrinsic camera calibration matrix as K, the perspective
transformation matrix as P, the transformation matrix from
global coordinates into the camera coordinate frame at time t
as Tt, the robot trajectory ut at time t in image coordinates
can be expressed as

ut = PKTtx. (2)

The footprint of the robot entailing its four wheels is circular
with a radius of 0.4m. Every area of the ground covered by

the footprint of the robot is considered as being traversed
by the robot. Thus, we extend the area that is considered as
traversed by 0.4m on both sides of the robot trajectory. We
denote this area as the robot path. We label the areas of ground
overlapping with the robot path in every image using our self-
supervised approach. The remaining pixels are unlabeled as the
robot never traversed the corresponding patches of ground and
thus no information about the terrain in such areas is available.

C. Unsupervised Acoustic Feature Learning
Each terrain patch that the robot traverses is represented

by two modalities: audio and vision. We obtain the visual
representation of a terrain patch from a distance using an on-
board camera, while we record the vehicle-terrain interaction
sounds by traversing the corresponding terrain patch. For our
unsupervised acoustic feature learning approach, we exploit the
highly discriminative visual embeddings of terrain patch images
obtained using a CNN pre-trained on the ImageNet dataset to
form triplets of audio samples. To form such discriminative
clusters of embeddings, triplet losses have been proposed [22].
We argue that the relative position of terrain patch image
embeddings in embedding space serve as a good approximation
for ground truth labels that have previously been relied on for
triplet forming. We form triplets of audio clips using this
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heuristic. Finally, we train a Siamese Encoder (SE), and a
variant with an additional reconstruction loss (SE-R) in order
to embed these audio clips into a highly discriminative audio
embedding space.

A triplet T consists of anchor sample x, a positive sample
x+ with the same class as x and a negative sample x− with a
class different from x. Denoting T as the as the set of triplets,
the triplet loss objective can be formulated as

Lt =
1

|T |
∑

(i,j,k)∈T

max[D2
i,j + α−D2

i,k, 0] (3)

where Di,j = ||xi − xj ||2 denotes the euclidean distance
between two embeddings xi and xj . The parameter α denotes a
margin between the positive samples and the negative samples.
In all our experiments, we use α = 1. The triplet loss enforces
that the embeddings of samples with the same label are pulled
together in embedding space and embeddings of samples with
different labels are pushed away from each other simultaneously.
As the ground truth labels of the audio samples are not available
to form triplets, we argue that an unsupervised heuristic can
serve as a substitute signal for the ground truth labels for triplet
creation: the local neighborhood of the terrain image patch em-
beddings. We obtain rectangular patches of terrain by selecting
segments of pixels along the robot path, as illustrated in Fig. 3.

The closest neighbor in the embedding space has a high
likelihood of belonging to the same ground truth class as
the anchor sample. Therefore, for sampling triplets, we select
the sample with the smallest euclidean distance in the visual
embedding space as a positive sample. We then select negative
samples by randomly selecting samples that are in a different
cluster in visual embedding space than the anchor sample.
Although it cannot be always guaranteed that the negative
sample does not have the same ground truth class, it has a high
likelihood of belonging to a different class, which we observe
in our experiments. Likewise, we argue that visually similar
terrain patches have high likelihood of belonging to the same
class. This means that in practice a fraction of the generated
triplets are not correctly formed. However, we empirically find
that it is sufficient if the majority all triplets have correct class
assignments as they outweigh the incorrectly defined triplets.

We train a Siamese Encoder on the spectrogram represen-
tations of the terrain audio clips, as described in Sec. III-A.
We use the architecture proposed in [29] as a strong baseline
for embedding audio samples. The objective of the Siamese
Encoder is to minimize the triplet loss Lt. In addition to the
Siamese Encoder variant, we propose to add a convolutional
decoder that transforms the embeddings back into the original
spectrogram domain and impose a reconstruction loss on the
decoded samples. We denote this variant as SE-R. We formulate
the reconstruction loss Lr as

Lr = ||g(f(xi))− xi||2, (4)

where f and g denote the encoder and decoder, respectively.
The objective of the SE-R model is to simultaneously mini-

mize a weighted sum of the triplet loss and the reconstruction
loss. Thus the complete loss objective can be formulated as

L = βLt + (1− β)Lr (5)

Fig. 3: An example birds-eye-view of the terrain with the robot path
superimposed. Pixels with known class Cobblestone and Grass are indicated
in blue and green respectively. The colored rectangles represent patches of
terrain whose features are used to form audio sample triplets. No labels are
available for the remaining pixels as the robot has not traversed those regions.

where β denotes a weighting factor between the two loss
components. Setting β = 0 results in a pure reconstruction
loss, while setting β = 1 results in only optimizing the triplet
loss, which is equivalent to our SE approach. For our SE-R
approach, we chose β = 0.5. Finally, we perform k-means
clustering of the embeddings to separate the samples into K
clusters, corresponding to the K terrain classes present in the
dataset. Our approach only requires us to set the number of
terrain classes that are present and assign terrain class names
to the cluster indices.

D. Self-Supervised Visual Terrain Classification

We use the resulting weakly self-labeled birds-eye-view
scenes to train a semantic segmentation network in a self-
supervised manner. A self-supervisory signal can be obtained
for every image pixel that contains a part of the robot path
for which the label is known from the unsupervised audio
clustering. Note that the segmentation masks for the traversed
terrain types are incomplete as the robot cannot be expected to
traverse every physical location of terrain in the view to gener-
ate complete segmentation masks. We alleviate this challenge by
considering all the pixels in camera images that do not contain
the robot path as a background class that does not contribute
to the segmentation loss. Fig. 3 illustrates a typical training
image with its segmentation mask superimposed. We deal with
the class imbalance in the training set by weighing each class
proportional to its log frequency in the training data set.

The segmentation loss formulation for one image using class
weighted cross-entropy is defined as

Lseg = −
∑
i

C∑
c

wcyi,c log(pi,c) (6)

where wc is the respective weight for each class, yi,c denotes
the ground truth label at image coordinate i, and log(pi,c)
denotes the log probability from the softmax output layer of
the neural network.

IV. EXPERIMENTAL EVALUATION

We evaluated our framework exhaustively on real-world data
that was collected using our Obelix robot platform in diverse
environments and perceptual conditions. In this section, we
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(a) Asphalt (b) Grass (c) Cobblestone (d) Parking Lot (e) Gravel

Fig. 4: Example birds-eye-view images and the corresponding spectrogram of the vehicle-terrain interaction sounds from the five different terrain classes
present in our dataset. Some terrains have visually similar colors and texture (a and e), while some terrains also exhibit similar audio signatures (b and e).
Several sequences also contain illumination changes, as well as different terrains bleeding into one another (in d where grass grows between stone tiles).

first describe the methodology that we used for collecting
our Freiburg Terrains dataset in Sec. IV-A, followed by a
description of the standard evaluation metrics that we use
to quantify the performance in Sec. IV-B and the training
procedure that we employ in Sec. IV-C. We then present
experimental results of our unsupervised acoustic feature
clustering approach in Sec. IV-D and evaluations of our self-
supervised semantic segmentation in Sec. IV-E. In Sec. IV-F,
we present qualitative analysis in challenging scenarios and
detailed ablation studies in Sec. IV-G. Finally we present results
that demonstrate the generalization ability of our model in
Sec. IV-H and its utility for trajectory planning in Sec. IV-I.

A. Dataset
We collected a large-scale dataset using our Obelix robot

equipped with a ZED stereo camera mounted on top and
pointing downwards onto the ground at an angle of 30◦

from the horizon. Images were captured at a frequency of
approximately 2Hz. For capturing vehicle-terrain interaction
sounds, we equipped our robot with a Rode Video-Mic
directional microphone that we mounted close to the rear wheel
of the robot, pointing towards the contact area between wheel
and ground terrain. We captured the audio data at a sampling
rate of 44 100Hz and a bit-depth of 16 bit. We then split the
audio stream into small clips of 500ms and tagged each clip
as well as the time-synchronized images with the pose of the
robot that we obtained using our SLAM system [28]. During
the data collection runs, we also varied the speed of the robot
from 0.2m/s to 1.0m/s to capture diverse variations in the
vehicle-terrain interaction sounds.

As our robot is equipped with rubber wheels, it is capable
of traversing smooth to rough hard surfaces such as asphalt,
cement, cobblestone or sett paving. It is also able to slowly tra-
verse off-road terrains such as mowed-grass or gravel paths with
hard surfaces. However, it is not suitable for traversing wet mud,
crushed stone or puddles due to the large risk of toppling over
or leading to entrenchment of the wheels. Therefore, we chose
to collect data on five different terrains, namely, Asphalt, Grass,
Cobblestone, Parking Lot, and Gravel. Fig. 4 shows example

images of these terrains along with their corresponding spec-
trograms of the vehicle-terrain interaction sounds. As we see,
some of these classes have very similar visual appearance such
as Asphalt and Gravel, while some of the other classes such
as Grass and Parking Lot have very similar auditory features.

Our dataset contains over four hours of audio and video
recordings that were collected over the course of three weeks.
In order to have diverse conditions in the dataset, we carried
out the data collection runs at different times of day as well
as in varying weather conditions including sunny, cloudy, and
overcast. Our dataset also contains diverse audio conditions
due to wind and distant ambient noises such as construction
work. To quantify the performance of our models, we manually
labeled the robot path segments with the respective ground
truth terrain class. This yields a set of weakly labeled images
as only the pixels of the image that contain the path segments
navigated by the robot are labeled. Furthermore, we manually
densely annotated 200 birds-eye-view terrain images in a pixel-
wise manner to yield the fully labeled validation set that we
also use in our experiments. Additionally, we evaluate our
approach on a complementary weakly labeled evaluation set
containing 500 images that are neither present in the training
set or the fully labeled validation set.

B. Evaluation Metrics

For evaluating our proposed unsupervised metric learning ap-
proach, we compare the clustering accuracy and the normalized
mutual information (NMI) score of the learned embeddings on
a validation split. The NMI score between two sets of clusters
Y and C is defined as

NMI(Y,C) =
2I(Y,C)

H(Y ) +H(C)
(7)

where I(Y,C) denotes the mutual information between cluster
set Y and C, and H(Y ) and H(C) denotes the entropy of
cluster sets Y and C respectively. We define Y as the cluster
set of the ground truth labels. The clustering accuracy can be
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(a) Epoch 0 (b) Epoch 10 (c) Epoch 30 (d) Epoch 90

Fig. 5: Two-dimensional t-SNE visualizations of the audio samples embedded with our SE-R approach after 0, 10, 30, and 90 epochs of training. The color of
the points indicate the corresponding ground truth class. We observe that clusters of embeddings are clearly separable as the training progresses and they
highly correlate with the ground truth terrain class.

obtained by assigning class labels to cluster indices that yield
the highest overall accuracy such that

Accuracy(Y,C) =
1

N

∑
k

max
j
|yk ∩ cj | (8)

where yk and ck denote particular clusters in Y and C
respectively. Once again we select Y as the cluster set of
the ground truth labels. The optimal assignment in terms of
clustering purity can then be obtained using the Hungarian
Algorithm [30]. We use the class-wise Intersection over Union
(IoU) and mean Intersection over Union (mIoU) score to
quantify the performance of our self-supervised semantic
segmentation model on the densely labeled validation set.
However, IoU values for weakly labeled images cannot be
meaningfully interpreted since only a small fraction (≤ 5%)
of pixels in each image are labeled. Therefore, we use the
average class-wise model recall for evaluations on the weakly
labeled validation set.

C. Training Details
1) Audio Clustering: We trained our SE and SE-R models

for 100 epochs using the AdaDelta optimizer with a learning
rate of 1× 10−2 and momentum of 0.9. While we initially
trained the comparison methods for deep embedded clustering
(DEC [24], IDEC [25], and DCEC [31]) with the hyperparam-
eters menioned in the original publications and then further
optimized them on our dataset. We adopt the architecture of the
audio encoder and decoder from the work of engel et al. [29]
and we use the MobileNet V2 [32] model pre-trained on the
ImageNet dataset for the visual feature extraction network that
is used for forming triplets in metric learning.

2) Self-Supervised Semantic Segmentation: For semantic
segmentation of the terrains, we adopt the AdapNet++ network
architecture [33] with an EfficientNet backbone. We perform
random augmentations during training including rotation,
flipping as well as color jitter in hue, saturation, brightness, and
contrast. We use the Adam optimizer with an initial learning
rate of 1× 10−3 and polynomial learning rate decay for training
the network. We set the parameters β1 = 0.9 and β2 = 0.999.

D. Evaluation of Unsupervised Acoustic Feature Clustering
We evaluate our proposed Siamese Encoder (SE) and

Siamese Encoder with Reconstruction (SE-R) models and
compare them with multiple recent unsupervised deep cluster-
ing methods, namely, Deep Embedded Clustering (DEC) [24],

TABLE I: Comparison of NMI scores and clustering accuracies for k-means
clustering of audio embeddings with different embedding models.

Method NMI Accuracy (%)

Image embeddings 0.518 68.32
Plain CNN Autoencoder [29] 0.584 77.89
DEC [24] 0.686 85.35
IDEC [25] 0.583 77.56
DCEC [31] 0.693 84.28

SE (Ours) 0.822 94.07
SE-R (Ours) 0.839 94.81

Improved Deep Embedded Clustering (IDEC) [25] and Deep
Clustering with Convolutional Autoencoders (DCEC) [31]).
We evaluate these models using the standard clustering metrics,
NMI score and clustering accuracy. We use the same encoder-
decoder architectures for all models to allow for a fair
comparison and we cluster the embeddings using the k-means
clustering algorithm. Results from this experiment is shown
in Table I. We note that our proposed method achieves the
best clustering accuracy and highest NMI score. The DEC and
DCEC models are able to substantially improve the clustering
metrics from the plain autoencoder, however they are not
able to achieve clustering accuracy over 85.35%. We observe
that the clustering obtained from the terrain image patch
embeddings yield a much lower NMI value and clustering
accuracy overall. While we sample our triplets from the
terrain image patch embeddings, we argue that predominantly
local class neighborhood consistency is the key contributor
to the success of our triplet sampling approach. With a high
probability, patches of the sample class are embedded close to
each other and patches from a different class are embedded
further away from a given sample. We observe that using our
triplet sampling strategy, 81.3% of all triplets are correctly
formed. For the clustering accuracies using our approach, we
report values of 94.07% and 94.81%, respectively.

Fig. 5 shows the audio embedding clusters that we obtain
using our SE-R approach, reduced to two spatial dimensions
using t-SNE. We note that before training the model, there
is already some correlation between the sample embedding
location and the sample label visible due to the convolutional
architecture of the encoder. We observe that as the training
progresses, the clusters become well separable and highly cor-
relate with the ground truth classes. The gap between clusters
and the non-uniform distribution of samples in embedding
space makes the clusters distinct and easily separable.
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Fig. 6: Normalized confusion matrix (in %) of our self-supervised semantic
terrain segmentation model trained using SE-R labels. Results are shown on
the fully labeled validation set.

E. Evaluation of Self-Supervised Semantic Segmentation
We train the semantic segmentation network in our self-

supervised framework using the weak labels that we obtain
from the unsupervised acoustic feature clustering. We consider
all the pixels in the image that do not have any weak labels to
be of a background class which is ignored for computing the
loss. We compare the evaluation metrics of the pixel-wise class
predictions of a model trained on data provided by the DEC
approach, our SE-R approach, and on the manually annotated
data for reference. The detailed scores for each of the terrain
classes in both the fully labeled evaluation validation set and the
weakly labeled evaluation validation set are listed in Table II.

The results demonstrate that our SE-R model provides
better self-supervised generation of training data for semantic
segmentation than the best performing unsupervised clustering
baseline DEC. This can be attributed to the higher clustering
accuracy that our model achieves which provides less noisy
labels for the semantic segmentation task and thus leads to
higher recall and IoU scores. Furthermore, we note that our
proposed model achieves a comparable performance as the
model trained in a supervised manner with manually annotated
ground truth labels. The training data produced with the DEC
approach contains more noisy labels due to the comparably
worse audio sample embedding clusters. Our model achieves
an improvement of 50.3% in the recall on the weakly labeled
validation set and an improvement of 30.2% in the mIoU
score on the fully labeled validation set, compared to the
results obtained with the model trained using the DEC labels.

Fig. 6 shows the confusion matrix for our self-supervised
semantic terrain segmentation model trained using the SE-R
labels. The results are shown on the fully labeled validation set.
We observe that the Gravel class is occasionally confused with
the Grass class. This misclassification can be attributed to the
fact that many gravel path patches are partially overgrown with
grass which cannot be accounted for when manually labeling
the images. We also note that some pixels predicted as the
Cobblestone class are confused with the terrain Parking Lot
class which can be attributed to the similar rectangular terrain
patterns in both classes.

F. Qualitative Semantic Terrain Segmentation Results
In this section, we qualitatively evaluate the performance of

our proposed semantic terrain segmentation model trained on
SE-R labels with the model trained on the DEC labels. Fig. 7

shows the input image transformed into the original perspective
along with the semantic segmentation outputs and the Improve-
ment\Error Map which shows the improvement achieved by
training on our SE-R labels over training on DEC labels, in
green and the pixels that are misclassified by our model trained
on SE-R labels in comparison to the ground truth in red.

We observe that for the majority of the scenes, the network
trained with our self-supervised SE-R approach is able to
predict the semantic classes accurately. Our model is also
able to segment complex scenes with visual clutter and
multiple terrains bleeding into one and another. We can see
that some misclassifications are produced due to high-contrast
shadows and visual ambiguities (i.e. classes such as Asphalt
and Gravel). In contrast, the segmentation network trained
on the labels obtained with the DEC model fails to predict
the correct semantic class in a significant number of scenes.
While it is able to mostly predict the borders between different
terrain classes due to the change in color and texture, it fails
to find the correct correspondence between terrain appearance
and underlying terrain class. This can be attributed to the
inconsistencies in labeling the images with the labels provided
by the DEC model. From the Improvement\Error Map, we
can observe that the segmentation network trained on labels
from our SE-R approach improves substantially over the
output of the baseline labeling approach. Fig. 7 (h) and (i)
show failure cases of our approach where the asphalt road and
cobblestone are misclassified due to the high visual similarity
to other gravel areas in the training dataset. This problem can
be alleviated be retraversing such regions and fine-tuning our
model on the new samples as we show in the results in Fig. 11.

G. Ablation studies

In this section, we present results from several ablation stud-
ies that we performed to evaluate and analyze the performance
of our model under various settings. We also present results that
show the improvement in performance due to the contributions
that we make in this work.

1) Noise Resistance of Audio Embeddings: Disruptive am-
bient sounds such as noise of the wind, construction sounds or
audio from people talking will often be present in most urban
environment and it will likely be captured by the microphone
mounted on the robot. This external environmental noise can
influence the position of the audio sample embeddings and
thus can in turn corrupt the clustering accuracy. Our approach
relies on good clustering accuracy in order to accurately self-
supervise the labeling of terrain images and it is therefore
important for the approach to be robust to noise. We evaluate
the noise robustness of the SE and SE-R variants of our model
in terms of the clustering accuracy with varying amount of
white noise added to the audio samples in our dataset. We
sample the noise from a Gaussian distribution with zero mean
and a standard deviation that is defined by the specific SNR.
We then train our networks on the original training dataset
and validate it on a disjoint noisy dataset. Fig. 8 shows the
dependency of the clustering validation accuracy on the signal-
to-noise-ratio (SNR). We observe that the clustering accuracy
drops noticeably for SNR values below 50 dB with both the
Siamese Encoder variants and SNR values below 10 dB yield
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Fig. 7: Qualitative semantic segmentation results of our model self-supervised by our unsupervised SE-R approach in comparison to the model self-supervised
using the unsupervised DEC method. We also show the improvement/error map which depicts the misclassified pixels in red and the pixels that are misclassified
by the segmentation model trained on labels from DEC but correctly predicted by SE-R in green. The last two rows show failure modes of our model. The
legend for terrain labels correspond to the colors shown in Table II.
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TABLE II: Comparison of the semantic segmentation performance of our model self-supervised with SE-R, our model self-supervised with the best performing
baseline model, and our model that is trained in a supervised manner with manually annotated images as ground truth. We report class-wise IoU scores for the
results on the densely labeled validation set and we report the recall for the weakly labeled validation set.

Weakly Labeled Validation Set (Recall in %) Fully Labeled Validation Set (IoU in %)

DEC [24] SE-R (Ours) DEC [24] SE-R (Ours)
(Self-Supervised) (Self-Supervised) (Supervised) (Self-Supervised) (Self-Supervised) (Supervised)

Asphalt 0.00 80.05 86.39 0.07 67.40 63.47
Gravel 2.49 49.80 73.56 46.42 45.04 42.02
Parking Lot 69.17 83.03 75.45 30.54 47.08 51.79
Grass 0.03 84.02 86.78 0.01 48.52 66.84
Cobblestone 42.83 68.97 66.71 42.45 62.21 58.76

Mean 22.92 73.21 77.76 23.93 54.08 56.51
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Fig. 8: Clustering accuracy of our two proposed Siamese Encoder variants
for validation audio samples that are corrupted with varying amount of noise.
Our SE-R approach achieves a higher clustering accuracy than the SE variant
regardless of the Signal-to-Noise-Ratio.

accuracies no better than chance. Nevertheless, our SE-R variant
maintains a higher accuracy than the SE variant for almost the
whole range of SNR values which shows the superior noise
resilience of our SE-R model.

2) Number of Samples for Clustering: Deep learning meth-
ods require a significant amount of training data and they
generally yield a better performance with increasing amounts
of the right training data. In order to study the influence of
this factor on the proposed framework, we investigate the
dependency of the clustering accuracy on the number of triplets
used for training. Fig. 9 shows results from this experiment
where it can be seen that the clustering accuracy benefits from
large number of triplets. This can be attributed to the fact that
the encoder can generalize effectively to unseen samples when
it is trained on a large number of samples.

3) Triplet Sampling Mechanism: In order to analyze the
influence of the triplet sampling mechanism on the clustering
accuracy of the audio samples, we performed experiments
by investigating different ways of sampling triplets from the
feature space of the terrain images. For each anchor sample
x0, we find a positive sample x+ and a negative sample x−

according to the following heuristics:
• Random: x+ and x− are randomly selected from the

training dataset.
• Distance-based: We first randomly select anchor samples.

Then we select the closest sample in visual embedding
space as a positive sample and the most distant sample
as a negative sample.

• Cluster-based: We first cluster the visual embedding
space using k-means clustering. We then randomly select
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Fig. 9: Clustering accuracy of our proposed SE and SE-R models when trained
on different numbers of triplets. The clustering accuracy increases with the
number of triplets used for training.

TABLE III: Influence of the triplet sampling method on audio clustering
accuracy of our SE-R approach. Correct triplets and clustering accuracy in %.

Sampling Mechanism Correct Triplets Clustering Accuracy NMI

Ground truth 100.0 98.48 0.945

Random 16.05 32.10 0.259

x+: cluster-based
x−: distance-based 49.23 62.45 0.433

x+: cluster-based
x−: cluster-based 54.04 82.75 0.670

x+: distance-based
x−: distance-based 75.51 65.05 0.488

x+: distance-based
x−: cluster-based 81.35 94.80 0.839

anchor samples and a random sample within the same
cluster as the anchor sample, as a positive example.
Subsequently, we select a random sample within a different
cluster as a negative sample.

• Ground truth: We formulate triplets according to their
known ground truth terrain class. This serves as a
reference.

Note that of all aforementioned heuristics, only the ground
truth based triplet forming requires knowledge about the class of
the samples. Table III shows the percentage of correctly formed
triplets, the resulting clustering accuracy, and NMI using our
SE-R approach for each triplet forming mechanism. In addition
to purely cluster-based or distance-based triplet forming, we
also evaluate combinations of the two methods. We observe
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Fig. 10: Influence of the ratio of correctly formed triplets on the clustering
accuracy for our SE-R and SE models. The clustering accuracy dramatically
increases with the fraction of correctly formed triplets for both models.

that random triplet forming leads to a low number of correctly
formed triplets and a low clustering accuracy that is marginally
above chance. The cluster-based and distance-based triplet
forming mechanisms yield varying fraction of correctly formed
triplets, where the mechanism with x+ distance-based and
x− cluster-based yields triplets of which 81.35% are formed
correctly. Training our SE-R network on triplets generated
with this mechanism also yields the reported highest clustering
accuracy of 94.8%. From these results we can infer that a low
fraction of correctly formed triplets leads to a lower clustering
accuracy and NMI. This can be attributed to the fact that a
higher number of correctly formed triplets outweighs the few
incorrectly formed triplets and still forces the respective audio
samples to be embedded into the right location in embedding
space. For a reference, we also report the clustering accuracy
and NMI for triplets which were formed using the ground truth
class of the audio samples which we do not assume that we
have for the other sampling methods as this would make the
approach supervised.

4) Ratio of Correctly Formed Triplets: We also investigated
the concrete dependency between the fraction of correctly
assigned triplets and the final clustering accuracy by deliberately
assigning incorrect samples as positive or negative samples,
respectively. Fig. 10 shows how the clustering accuracy changes
with the ratio of correctly formed triplets. We observe that
the clustering accuracy increases with the fraction of correctly
formed triplets. The clustering accuracy drops below 90%
using our SE-R approach with a correct triplet ratio of 0.8 and
monotonically decreases to values of 30% for correct triplet
ratios lower than 0.2. We remark that this performance is
consistent with the observations made in the previous section.
We also observe that our SE-R variant consistently yields higher
clustering accuracies than our SE variant.

5) Segmentation Network Architectures: In this section,
we investigate the performance of various recently proposed
semantic segmentation architectures for self-supervised learning
in our framework. Larger networks such as DeepLabv3+ [34]
typically have several millions of parameters which makes it
not only inefficient for online robotics application but also
require an enormous amount of computational capacity for
training. Networks such as ERFNet [38], BiSeNet [36], and F-
SCNN [37] rather focus on keeping the number of parameters
low resulting in much higher training and inference speeds

TABLE IV: Comparision of the self-supervised semantic terrain segmentation
performance with different network architectures.

Model Backbone Params mIoU Recall

DeepLab-v3+ [34] ResNet-50 59.3M 47.35 48.44
DeepLab-v3+ [34] DRN-D-105 40.7M 43.78 51.58
DeepLab-v3+ [34] Xception 54.7M 45.51 68.96
DeepLab-v3+ [34] MobileNet-V2 5.8M 49.48 74.62
AdapNet++ [33] EfficientNet 16.3M 56.57 77.73
ENet [35] Custom 0.4M 45.90 83.14
BiSeNet [36] Xception 5.8M 43.79 73.85
Fast-SCNN [37] Custom 1.1M 47.42 68.70

TABLE V: Comparison of the self-supervised semantic terrain segmentation
performance while learning from different perspectives.

Perspective mIoU (%)

Standard 41.89
Birds-eye-view 56.53

on a given hardware budget. For our self-supervised terrain
segmentation framework, we evaluate four different backbones
for the DeepLabv3+ architecture on our weakly supervised ter-
rain classification dataset: Residual Network (ResNet-50) [39],
Dilated Residual Network (DRN-D-105) [40], Depthwise
Separable Convolutions (Xception) [41], and MobileNetV2 [32].
Additionally, we evaluate three recent segmentation networks
with a smaller number of parameters: ENet [35], BiSeNet [36],
and Fast-SCNN [37]. The results from this experiments are
presented in Table IV. We observe that the AdapNet++ network
yields the highest mean IoU score on our weakly labeled
Freiburg Terrains dataset, while ENet achieves the highest
recall. Therefore, we adopt the AdapNet++ architecture with
the Efficient backbone for self-supervised semantic terrain
segmentation in our framework.

6) Influence of the Perspective Transformation: Semantic
segmentation is typically performed using a scene represen-
tation from the perspective of the camera. We investigate in
the influence of a perspective transformation of the terrain
images into a perspective according to the position of a virtual
birds-eye-view camera. A birds-eye-view representation of a
scene has the advantage that the terrain patterns that are visible
in the image do not have any dependency on the distance of
a patch of terrain to the camera. Table V shows the results
from this experiment where we observe that the birds-eye-view
terrain image representation yields a higher mean IoU score
than from the standard perspective of the camera. This can be
attributed to the fact that the typically occurring terrain-specific
patterns are independent from the distance to the camera in
the birds-eye-view perspective.

H. Generalization to Terrain Appearance Changes

One of the major advantages of our self-supervised approach
is that new labels on previously unseen terrains can easily be
generated by the robot automatically. While the terrain traversal
sounds do not substantially vary with the weather conditions
other than rain and winds, the visual appearance of terrain can
vary depending on several factors including time of day, season
or cloudiness. In order to demonstrate the advantages of audio-
based self-supervision, we collected an additional dataset in
lighting conditions that are not present in the Freiburg Terrains
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Fig. 11: Qualitative results on a new low light dataset that was captured at dusk that has considerable amount of motion blur, color noise, and artificial lighting.
We show a comparison between the terrain classification model without and with fine-tuning on training data created using our self-supervised approach. The
legend for terrain labels correspond to the colors shown in Table II.

dataset. We record data at dusk with low light conditions and
artificial lighting resulting in a variation in terrain hues and
substantial motion blur. We qualitatively compare the terrain
classification results for a model trained exclusively on the
Freiburg Terrains dataset, and a model trained jointly on the
Freiburg Terrains dataset as well as on the new low light dataset.
Qualitative results from this experiment is shown in Fig. 11.

Experiments demonstrate that our SE-R model trained on
this combined dataset is able to automatically label 93.1%
of the audio clips in the new low-light dataset accurately.
Our proposed framework enables us to fine-tune the semantic
terrain segmentation model in a new domain without any
human labeling effort, as the labels in the new domain can
automatically be generated using the cluster indices of the
audio sample embeddings. We observe that after fine-tuning
the segmentation model for 10 additional epochs, it accurately
predicts the terrains visible in the majority of the scenes.
Whereas, the original model that was not fine-tuned does not
generalize effectively to the visual appearances of terrains in
the new scenes. The changes in lighting and hue of terrains
in addition to motion blur and other artifacts of low light
cannot be easily modeled as part of the augmentations that
are performed while training. We argue that the ability to
adapt to new environments in a self-supervised manner is an
essential ability for autonomous robots to successfully navigate
in changing environments and it brings us a step closer towards
lifelong learning of traversability estimation.

I. Semantic Terrain Mapping and Trajectory Planning
In this section, we demonstrate the utility of our proposed

self-supervised semantic segmentation framework for building
semantic terrain maps of the environment. We further show how
the generated terrain map enables a trajectory planner to choose
lower cost trajectories compared to not using terrain-aware
planning. As a proof of concept, we use the Dijkstra-algorithm
for planning minimum cost trajectories. To build such a map,
we use the poses of the robot that we obtain using our SLAM
system and the terrain predictions of the birds-eye-view camera
images. We project each image into the correct location in a
global map using the 3-D camera pose and we use no additional
image blending or image alignment optimization. For each

single birds-eye-view image, we generate pixel-wise terrain
classification predictions using our self-supervised semantic
segmentation model. We then project these segmentation mask
predictions into their corresponding locations in the global
semantic terrain map, similar to the procedure that we employ
for the birds-eye-view images. When there are predictions of a
terrain location from multiple views, we choose the class with
the highest prediction count for each pixel in the map. We also
experimented with fusing the predictions from multiple views
using Bayesian fusion which yields similar results.

Fig. 12 shows the tiled birds-eye-view of two small sections
of an experimental site and the corresponding tiled semantic
prediction map obtained using our model that also shows
two exemplary trajectories. It can be observed that our self-
supervised terrain segmentation model yields predictions that
are for the most part globally consistent. In Fig. 12 (b), we see
that the class boundaries for the terrain classes such as Asphalt,
Grass, and Parking Lot are well-aligned with the ground truth
terrains. It can also be seen that even the overgrown grass in the
parking lot that blends into different terrains is being segmented.
While in Fig. 12 (d) we observe some misclassifications in the
cobblestone area on the left side of the map and in the center
of the grass region due to shadows from trees. However the
terrain classes Grass and Asphalt are accurately predicted in
the majority of pixels.

For trajectory planning, we interpret the semantic terrain
map as a graph with each neighboring pixel pair as an edge
and each pixel as a node. Edge costs are assigned according
to their connected node class. We first plan a trajectory with
equal cost assigned to each pixel which results in the trajectory
shown in red. Note that the trajectory planned without any
terrain awareness is the shortest route between points Start and
Goal as this minimizes the global cost. In order to illustrate the
advantages of cost-aware planning, we now associate high cost
with the traversal of class Grass, medium cost with Parking
Lot, and low cost with terrain Asphalt. The trajectory planned
with the aforementioned costs as constraints is shown in white.
In Fig. 12 (b), we can see that the trajectory avoids Grass or
the Parking Lot altogether at the cost of a longer trajectory but
more safely and efficiently traversable by our robot. While in
Fig. 12 (d), we can see that the planned terrain-aware trajectory
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Fig. 12: Tiled birds-eye-view images (a, c) and the corresponding semantic terrain maps (b, d) built from the predictions of our self-supervised semantic terrain
segmentation model. A cost-aware trajectory is shown as a white line and a cost-unaware trajectory is shown as a blue line. The legend for terrain labels
correspond to the colors shown in Table II. Note how the cost-aware trajectory successfully avoids terrain classes Grass and Parking Lot that have higher
traversal cost than Asphalt.

again avoids high-cost terrains such as Grass or Parking Lot
and follows Cobblestone or Asphalt to reach the goal. These
experiments demonstrate that our framework can readily be
used for planning efficient terrain-aware trajectories for robot
navigation.

V. CONCLUSION

In this work, we proposed a self-supervised terrain classi-
fication framework that exploits the training signal from an
unsupervised proprioceptive terrain classifier to learn an extero-
ceptive classifier for pixel-wise semantic terrain segmentation.
We presented a novel heuristic for triplet sampling in metric
learning that leverages a complementary modality as opposed
to the typical strategy that requires ground truth labels. We
employed this proposed heuristic for unsupervised clustering of
vehicle-terrain interaction sound embeddings and subsequently
used the resulting clusters formed by the audio embeddings for
self-supervised labeling of terrain patches in images. We then
trained a semantic terrain segmentation network from these
weak labels for dense pixel-wise classification of terrains that
are in front of the robot.

We introduced the new challenging Freiburg Terrains dataset
that we publicly released to encourage future work on self-
supervised multimodal learning. We demonstrated the perfor-
mance of our framework on this first-of-a-kind dataset where
we showed that our proposed unsupervised proprioceptive clas-
sification approach outperforms existing unsupervised methods
achieving state-of-the-art performance. We also presented our
self-supervised semantic terrain segmentation results where
our model achieves a comparable performance to training on
fully supervised manually annotated labels. Additionally, we

presented exhaustive qualitative results and ablation studies to
highlight the importance of the contributions that we made in
this work. Finally, we demonstrated the utility of our framework
for semantic terrain mapping and trajectory planning for robot
navigation. More importantly, we presented experiments in a
new environment that show the generalization ability of our
unsupervised proprioceptive terrain classifier and the ability
of our semantic terrain segmentation model to automatically
adapt to new environments in a self-supervised manner. We
believe that this work has now brought us a step closer to
being able to learn in a lifelong manner.
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