Robot Mapping

EKF SLAM

Cyrill Stachniss

Simultaneous Localization and Mapping (SLAM)

- Building a map and locating the robot in the map at the same time
- Chicken-or-egg problem

Definition of the SLAM Problem

Given

• The robot's controls $u_{1:T} = \{u_1, u_2, u_3 \dots, u_T\}$ • Observations $z_{1:T} = \{z_1, z_2, z_3 \dots, z_T\}$ Wanted

Map of the environment

m

Path of the robot

$$x_{0:T} = \{x_0, x_1, x_2 \dots, x_T\}$$

Three Main Paradigms

Particle filter

Graphbased

Bayes Filter

 Recursive filter with prediction and correction step

• Prediction

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

Correction

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_{t-1})$$

EKF for Online SLAM

 The Kalman filter provides a solution to the online SLAM problem, i.e.

$$p(x_t, m \mid z_{1:t}, u_{1:t})$$

Extended Kalman Filter Algorithm

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 1: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ 2: $\bar{\Sigma}_t = G_t \ \Sigma_{t-1} \ G_t^T + R_t$ 3: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ 4: $\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$ 5: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$ 6: 7: return μ_t, Σ_t

EKF SLAM

- Application of the EKF to SLAM
- Estimate robot's pose and location of features in the environment
- Assumption: known correspondence
- State space is

EKF SLAM: State Representation

- Map with *n* landmarks: (3+2n)-dimensional Gaussian
- Belief is represented by

EKF SLAM: State Representation

More compactly

EKF SLAM: State Representation

• Even more compactly (note: $x_R \rightarrow x$)

EKF SLAM: Filter Cycle

- 1. State prediction
- 2. Measurement prediction
- 3. Measurement
- 4. Data association
- 5. Update

EKF SLAM: State Prediction

EKF SLAM: Measurement Prediction

EKF SLAM: Obtained Measurement

 $\begin{pmatrix} x_R \\ m_1 \\ \vdots \end{pmatrix} \begin{pmatrix} \Sigma_{x_R x_R} & \Sigma_{x_R m_1} & \dots & \Sigma_{x_R m_n} \\ \Sigma_{m_1 x_R} & \Sigma_{m_1 m_1} & \dots & \Sigma_{m_1 m_n} \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$ $\begin{array}{cccc} \vdots & \ddots \\ \Sigma_{m_n x_R} & \Sigma_{m_n m_1} & \ldots \end{array}$ $\Sigma_{m_n m_n}$ m_n \sum μ

EKF SLAM: Data Association

EKF SLAM: Update Step

 $\begin{pmatrix} \Sigma_{x_R x_R} & \Sigma_{x_R m_1} & \dots & \Sigma_{x_R m_n} \\ \Sigma_{m_1 x_R} & \Sigma_{m_1 m_1} & \dots & \Sigma_{m_1 m_n} \end{pmatrix}$ x_R m_1 \vdots $\Sigma_{m_n m_1}$ $\sum_{m_n x_R}$ $\Sigma_{m_n m_n}$ • • • m_r \sum μ

EKF-SLAM: Concrete Example

Setup

- Robot moves in the plane
- Velocity-based motion model
- Robot observes point landmarks
- Range-bearing sensor
- Known data association
- Known number of landmarks

Initialization

- Robot starts in its own reference frame (all landmarks unknown)
- 2N+3 dimensions

$$\mu_{0} = (0 \ 0 \ 0 \ \dots \ 0)^{T}$$

$$\Sigma_{0} = \begin{pmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \\ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \\ 0 \ 0 \ 0 \ \infty \ \dots \ 0 \\ \vdots \ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ 0 \ 0 \ \dots \ \infty \end{pmatrix}^{T}$$

Extended Kalman Filter Algorithm

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 1: 2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ 3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ 4: $\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$ 5: 6: $\Sigma_t = (I - K_t H_t) \,\overline{\Sigma}_t$ 7: return μ_t, Σ_t

Prediction Step (Motion)

- Goal: Update state space based on the robot's motion
- Robot motion in the plane

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t}\sin\theta + \frac{v_t}{\omega_t}\sin(\theta + \omega_t\Delta t) \\ \frac{v_t}{\omega_t}\cos\theta - \frac{v_t}{\omega_t}\cos(\theta + \omega_t\Delta t) \\ \omega_t\Delta t \end{pmatrix}$$

$$g_{x,y,\theta}(u_t, (x, y, \theta)^T)$$

How to map that to the 2N+3 dim space?

Update the State Space

From the motion in the plane

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t}\sin\theta + \frac{v_t}{\omega_t}\sin(\theta + \omega_t\Delta t) \\ \frac{v_t}{\omega_t}\cos\theta - \frac{v_t}{\omega_t}\cos(\theta + \omega_t\Delta t) \\ \omega_t\Delta t \end{pmatrix}$$

to the 2N+3 dimensional space

$$\begin{pmatrix} x'\\y'\\\theta'\\\vdots \end{pmatrix} = \begin{pmatrix} x\\y\\\theta\\\vdots \end{pmatrix} + \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \dots 0\\0 & 1 & 0 & 0 \dots 0\\0 & 0 & 1 & 0 \dots 0\\0 & 0 & 1 & 0 \dots 0\\\frac{2Ncols}{F_x^T} \end{pmatrix}^T \begin{pmatrix} -\frac{v_t}{\omega_t}\sin\theta + \frac{v_t}{\omega_t}\sin(\theta + \omega_t\Delta t)\\\frac{v_t}{\omega_t}\cos\theta - \frac{v_t}{\omega_t}\cos(\theta + \omega_t\Delta t)\\\omega_t\Delta t \end{pmatrix}}_{K_x^T}$$

Extended Kalman Filter Algorithm

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ -DONE
3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$
6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$
7: return μ_t, Σ_t

Update Covariance

 The function g only affects the robot's motion and not the landmarks

Jacobian of the motion (3x3) $G_t = \begin{pmatrix} G_t^x & 0 \\ 0 & I \end{pmatrix}$ $Identity (2N \times 2N)$

Jacobian of the Motion

$$G_t^x = \frac{\partial}{\partial (x, y, \theta)^T} \left[\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \right]$$

This Leads to the Update

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ DONE
3: $\Rightarrow \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
 $= \begin{pmatrix} G_t^x & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} \Sigma_{xx} & \Sigma_{xm} \\ \Sigma_{mx} & \Sigma_{mm} \end{pmatrix} \begin{pmatrix} (G_t^x)^T & 0 \\ 0 & I \end{pmatrix} + R_t$
 $= \begin{pmatrix} G_t^x \Sigma_{xx} (G_t^x)^T & G_t^x \Sigma_{xm} \\ (G_t^x \Sigma_{xm})^T & \Sigma_{mm} \end{pmatrix} + R_t$

Extended Kalman Filter Algorithm

EKF SLAM – Prediction

$$\begin{aligned} \mathbf{EKF_SLAM_Prediction}(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, c_t, R_t): \\ 2: \quad F_x &= \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix} \\ 3: \quad \bar{\mu}_t &= \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \\ 4: \quad G_t &= I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x \\ 5: \quad \bar{\Sigma}_t &= G_t \ \Sigma_{t-1} \ G_t^T + \underbrace{F_x^T \ R_t^x \ F_x}_{R_t} \\ \end{aligned}$$

Extended Kalman Filter Algorithm

EKF SLAM – Correction

- Known data association
- cⁱ_t = j: i-th measurement observes
 the landmark with index j
- Initialize landmark if unobserved
- Compute the expected observation
- Compute the Jacobian of h
- Then, proceed with computing the Kalman gain

Range-Bearing Observation

- Range-bearing observation $z_t^i = (r_t^i, \phi_t^i)^T$
- If landmark has not been observed

$$\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix}$$

observed e location of landmark j

estimated robot's location

relative measurement

Expected Observation

 Compute expected observation according to the current estimate

Jacobian for the Observation

• **Based on**
$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

 $q = \delta^T \delta$
 $\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$

Compute the Jacobian

$${}^{\text{low}}H_t^i = \frac{\partial h(\bar{\mu}_t)}{\partial \bar{\mu}_t} \\ = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{pmatrix}$$

Jacobian for the Observation

Use the computed Jacobian

$${}^{\text{low}}H_t^i = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{pmatrix}$$

Next Steps as Specified...

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ DONE
3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ DONE
4: $\Longrightarrow K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$
6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$
7: return μ_t, Σ_t

Extended Kalman Filter Algorithm

EKF SLAM – Correction (1/2)

$$\begin{aligned} \mathbf{EKF_SLAM_Correction} \\ 6: \quad Q_t &= \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_{\phi}^2 \end{pmatrix} \\ 7: \quad \text{for all observed features } z_t^i &= (r_t^i, \phi_t^i)^T \text{ do} \\ 8: \quad j &= c_t^i \\ 9: \quad \text{if landmark } j \text{ never seen before} \\ 10: \quad \begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} &= \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix} \\ 11: \quad \text{endif} \\ 12: \quad \delta &= \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix} \\ 13: \quad q &= \delta^T \delta \\ 14: \quad \hat{z}_t^i &= \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix} \end{aligned}$$

EKF SLAM – Correction (2/2)

Implementation Notes

- Measurement update in a single step requires only one full belief update
- Always normalize the angular components
- You may not need to create the F matrices explicitly (e.g. in Octave)

Done!

Loop Closing

- Recognizing an already mapped area
- Data association with
 - high ambiguity
 - possible environment symmetries
- Uncertainties collapse after a loop closure (whether the closure was correct or not)

Before the Loop Closure

Courtesy of K. Arras

After the Loop Closure

Courtesy of K. Arras

SLAM: Loop Closure

- Loop closing reduces the uncertainty in robot and landmark estimates
- This can be exploited when exploring an environment for the sake of better (e.g. more accurate) maps
- Wrong loop closures lead to filter divergence

EKF-SLAM Properties

In the limit, the landmark estimates become fully correlated

Мар

Correlation matrix

Courtesy of M. Montemerlo

Мар

Correlation matrix

Courtesy of M. Montemerlo

Мар

Correlation matrix

Courtesy of M. Montemerlo

EKF-SLAM Properties

- The determinant of any sub-matrix of the map covariance matrix decreases monotonically
- New landmarks are initialized with max uncertainty

EKF-SLAM Properties

 In the limit, the covariance associated with any single landmark location estimate is determined only by the initial covariance in the vehicle location estimate.

Example: Victoria Park Dataset

Courtesy of E. Nebot

Victoria Park: Data Acquisition

Courtesy of E. Nebot

Victoria Park: EKF Estimate

Victoria Park: Landmarks

Courtesy of E. Nebot

Example: Tennis Court Dataset

Courtesy of J. Leonard and M. Walter

EKF SLAM: Tennis Court

odometry

estimated trajectory

Courtesy of J. Leonard and M. Walter 56

EKF-SLAM Complexity

- Cubic complexity depends only on the measurement dimensionality
- Cost per step: dominated by the number of landmarks: $O(n^2)$
- Memory consumption: $O(n^2)$
- The EKF becomes computationally intractable for large maps!

EKF-SLAM Summary

- The first SLAM solution
- Convergence proof for the linear Gaussian case
- Can diverge if non-linearities are large (and the reality is non-linear...)
- Can deal only with a single mode
- Successful in medium-scale scenes
- Approximations exists to reduce the computational complexity

Literature

EKF SLAM

 Thrun et al.: "Probabilistic Robotics", Chapter 10