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Simultaneous Localization and 
Mapping (SLAM) 
§  Building a map and locating the robot 

in the map at the same time 
§  Chicken-or-egg problem 

map 

localize 
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Definition of the SLAM Problem 

Given 
§  The robot’s controls 

§ Observations 
 

Wanted 
§ Map of the environment 

§  Path of the robot 
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Three Main Paradigms 

Kalman 
filter 

Particle 
filter 

Graph-
based 
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Bayes Filter 

§  Recursive filter with prediction and 
correction step 

§  Prediction 

§  Correction 
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EKF for Online SLAM 

§  The Kalman filter provides a solution 
to the online SLAM problem, i.e. 



7 

Extended Kalman Filter 
Algorithm 
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EKF SLAM 

§  Application of the EKF to SLAM 
§  Estimate robot’s pose and location of 

features in the environment 
§  Assumption: known correspondence 
§  State space is 
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EKF SLAM: State Representation 
§  Map with n landmarks: (3+2n)-dimensional 

Gaussian 
§  Belief is represented by  
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EKF SLAM: State Representation 
§  More compactly 
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EKF SLAM: State Representation 
§  Even more compactly (note:              )  
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EKF SLAM: Filter Cycle 

1.  State prediction 
2. Measurement prediction 
3. Measurement 
4. Data association 
5. Update 
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EKF SLAM: State Prediction 
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EKF SLAM: Measurement 
Prediction 
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EKF SLAM: Obtained 
Measurement 
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EKF SLAM: Data Association 
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EKF SLAM: Update Step 
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EKF-SLAM: Concrete Example 

Setup 
§  Robot moves in the plane 
§  Velocity-based motion model 
§  Robot observes point landmarks 
§  Range-bearing sensor 
§  Known data association 
§  Known number of landmarks 
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Initialization 

§  Robot starts in its own reference 
frame (all landmarks unknown)  

§  2N+3 dimensions 
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Extended Kalman Filter 
Algorithm 
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Prediction Step (Motion) 

§  Goal: Update state space based on the 
robot’s motion 

§  Robot motion in the plane 

§  How to map that to the 2N+3 dim 
space? 
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Update the State Space 

§  From the motion in the plane 

§  to the 2N+3 dimensional space 
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Extended Kalman Filter 
Algorithm 

DONE 
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Update Covariance 

§  The function   only affects the robot’s 
motion and not the landmarks   

 
 Jacobian of the motion (3x3) 

Identity (2N x 2N) 
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Jacobian of the Motion 
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This Leads to the Update 

DONE 
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Extended Kalman Filter 
Algorithm 

DONE 
DONE 
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EKF SLAM – Prediction  
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Extended Kalman Filter 
Algorithm 

DONE 
Apply & DONE 
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EKF SLAM – Correction 

§  Known data association 
§          :  i-th measurement observes  

the landmark with index j 
§  Initialize landmark if unobserved  
§  Compute the expected observation 
§  Compute the Jacobian of  
§  Then, proceed with computing the 

Kalman gain 
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Range-Bearing Observation 

§  Range-bearing observation 
§  If landmark has not been observed  

observed 
location of 
landmark j 

estimated 
robot’s 
location 

relative 
measurement 
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Expected Observation 

§  Compute expected observation 
according to the current estimate 
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Jacobian for the Observation 

§  Based on  

§  Compute the Jacobian 
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Jacobian for the Observation 

§  Use the computed Jacobian 

§  map it to the high dimensional space 
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Next Steps as Specified… 

DONE 
DONE 



36 

Extended Kalman Filter 
Algorithm 

DONE 
DONE 

Apply & DONE 

Apply & DONE 
Apply & DONE 
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EKF SLAM – Correction (1/2) 
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EKF SLAM – Correction (2/2) 
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Implementation Notes 

§  Measurement update in a single step 
requires only one full belief update  

§  Always normalize the angular 
components  

§  You may not need to create the 
matrices explicitly (e.g. in Octave)  
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Done! 
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Loop Closing 
§  Recognizing an already mapped area 
§  Data association with 

§  high ambiguity 
§  possible environment symmetries 

§  Uncertainties collapse after a loop closure 
(whether the closure was correct or not) 
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Before the Loop Closure 

Courtesy of K. Arras 
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After the Loop Closure 

Courtesy of K. Arras 
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SLAM: Loop Closure 
§  Loop closing reduces the uncertainty in 

robot and landmark estimates  

§  This can be exploited when exploring 
an environment for the sake of better  
(e.g. more accurate) maps 

§  Wrong loop closures lead to filter 
divergence 
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EKF-SLAM Properties  

§  In the limit, the landmark estimates 
become fully correlated 

[Dissanayake et al., 2001] 
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EKF SLAM 

Map              Correlation matrix 
Courtesy of M. Montemerlo 
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EKF SLAM 

Map              Correlation matrix 
Courtesy of M. Montemerlo 
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EKF SLAM 

Map              Correlation matrix 
Courtesy of M. Montemerlo 
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EKF-SLAM Properties  
§  The determinant of any sub-matrix of the map 

covariance matrix decreases monotonically 
§  New landmarks are initialized with max 

uncertainty  
  

[Dissanayake et al., 2001] 
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EKF-SLAM Properties  
§  In the limit, the covariance associated with 

any single landmark location estimate is 
determined only by the initial covariance 
in the vehicle location estimate. 

[Dissanayake et al., 2001] 
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Example: Victoria Park Dataset 

Courtesy of E. Nebot 
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Victoria Park: Data Acquisition 

Courtesy of E. Nebot 
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Victoria Park: EKF Estimate 

Courtesy of E. Nebot 
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Victoria Park: Landmarks 

Courtesy of E. Nebot 
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Example: Tennis Court Dataset 

Courtesy of J. Leonard and M. Walter 
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EKF SLAM: Tennis Court 

odometry estimated trajectory 

Courtesy of J. Leonard and M. Walter 
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EKF-SLAM Complexity 

§  Cubic complexity depends only on the 
measurement dimensionality  

§  Cost per step: dominated by the 
number of landmarks: 

§  Memory consumption:  
§  The EKF becomes computationally 

intractable for large maps! 
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EKF-SLAM Summary 

§  The first SLAM solution 
§  Convergence proof for the linear 

Gaussian case 
§  Can diverge if non-linearities are large 

(and the reality is non-linear...) 
§  Can deal only with a single mode 
§  Successful in medium-scale scenes 
§  Approximations exists to reduce the 

computational complexity 
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Literature 

EKF SLAM 
§  Thrun et al.: “Probabilistic Robotics”, 

Chapter 10 


