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Least Squares in General

= Minimizes the sum of the squared
errors

= Strong relation to ML estimation in
the Gaussian case

Problems:
= Sensitive to outliers
= Only Gaussians (single modes)



Data Association Is Ambiguous
And Not Always Perfect

= Places that look identical
= Similar rooms in the same building
» Cluttered scenes

= GPS multi pass (signal reflections)
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Such Situations Occur In Reality




Committing To The Wrong Mode
Can Lead to Mapping Failures
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Mathematical Model

= We can express a multi-modal belief
by a sum of Gaussians

1TQ

p(z | x) = neXD(—— zgezg)
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1 7
p(Z ‘ X) — Zwknk eXp(__ezijZ]kezjk)
k
Sum of Gaussians with k modes



Problem

= During error minimization, we consider
the negative log likelihood

1
— log p(Z ‘ X) = Eeg;ﬂwew — logn

4

1
—logp(z | x) = —log Zwmk eXD(—EeZ’k ijkeijk)
k

The log cannot be moved inside the sum!
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Max-Mixture Approximation

= [nstead of computing the sum of
Gaussians at X, compute the
maximum of the Gaussians

1
p(Z ‘ X) Zwknk eXp(__eZ;k,ﬂmkezgk)
k

1

T
~ mkax WML eXp(_Eeka@]keijk)
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Max-Mixture Approximation

Original bi-modal mixture
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Log Likelihood Of The Max-
Mixture Formulation

= The log can be moved inside the max
operator

1
p(Z | X) ~ mkax WENE exp(—EegkﬂzjkeZ]k)
1

logp(z | x) =~ max —2 g;kﬁzjkezgk+log(wk77k)

1
or. —|ng(Z|X) ~ min 2 Z;kﬂzﬂkewk Iog(wknk)

k
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Integration

= With the max-mixture formulation, the
log likelihood again results in local
quadratic forms

= Easy to integrate in the optimizer:
1. Evaluate all k components

2. Select the component with the
maximum log likelihood

3. Perform the optimization as before
using only the max components
(as a single Gaussian)
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Performance (Gauss vs. MM)




Runtime

Run time anaIyS|s for Intel Dataset
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MM For Outlier Rejection

Bi-modal false loop closure
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Max-Mixture and Outliers

= MM formulation is useful for multi-
model constraints (D.A. ambiguities)

= MM is also a handy tool outliers
(D.A. failures)

= Here, one mode represents the edge
and a second model| uses a flat
Gaussian for the outlier hypothesis

18



Performance (1 outlier)

Gauss-Newton MM Gauss-Newton
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Performance (10 outliers)
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Performance (100 outliers)

N ;
>~
» - v v
3 i)
9757 M
7 ) =
TR o e -
1 \ \|
\ -
4 G i
> 2
2d ” P 3 P
7 "
4 ! o -t W \
/ g o 4 \
V/ % - -
y 75 & ¥ PP
'~ - o []
s ¥ .. = \
L P P NS
Y. v - "
4 — 0 3., 3
f ¥ . ‘
R B <. 0%
N . At N \ »
X 7 N\ 4
. 8
2 - t
TR g A . g
s
AL

Gauss-Newton MM Gauss-Newton

21



Optimizing With Outliers

= Assuming a Gaussian error in the
constraints is not always realistic

= Large errors are problematic

The

Normal
Distribution

Probability of Cases
in portions of the curve

Standard Deviations
From The Mean




Robust M-Estimators

= Assume non-normally-distributed
noise

= Intuitively: PDF with “heavy tails”
= p(e) function used to define the PDF

p(e) = exp(—p(e))
= Minimizing the neq. log likelihood
x* = argmin }_ p(e;(x))
(/
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Different Rho Functions

= Gaussian: p(e) = ¢°

= Absolute values (L1 norm):p(e) = |e]
= Huber M-estimator

2

,0(6) — % |f‘€‘ < cC
| <

le|] —5) otherwise

= Several others (Tukey, Cauchy, Blake-
Zisserman, Corrupted Gaussian, ...)
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Huber

= Mixture of a quadratic and a linear
function

5 if le| < c
e = { 2
ple) c(le| —5) otherwise

\
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Different Rho Functions
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MM Cost Function For Outliers

© Max Mixture
* Corrupted Gaussian
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Robust Estimation

= Choice of the rho function depends on
the problem at hand

= Huber function is often used

= MM for outlier handling is similar to a
corrupted Gaussian

= MM additionally supports multi-model
constraints

= Combinations of MM for multi-
modalities and Huber possible
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Conclusions

= Sum of Gaussians cannot be used
easily in the optimization framework

= Max-Mixture formulation approximates
the sum by the max operator

= This allows for handling data
association ambiguities and failures

= Minimal performance overhead
= Minimal code changes for integration
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