Foundations of AI

4. Informed Search Methods

Heuristics, Local Search Methods, Genetic Algorithms

Wolfram Burgard & Bernhard Nebel

Contents

- Best-First Search
- A* and IDA*
- Local Search Methods
- Genetic Algorithms

Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of how “good” a node is.

Informed Search: Knowledge of the “cost” of a given node in the form of an evaluation function h, which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the “best” (smallest) h-value.

General Algorithm

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem
EVAL-FN, an evaluation function
Queueing-Fn ← a function that orders nodes by EVAL-FN
return GENERAL-SEARCH(problem, Queueing-Fn)

When Eval-Fn is always correct, we don’t need to search!
Greedy Search

A possible way to judge the “worthiness” of a node is to estimate its distance to the goal.

\[h(n) = \text{estimated distance from } n \text{ to the goal} \]

The only real restriction is that \(h(n) = 0 \) if \(n \) is a goal.

A best-first search with this function is called a greedy best-first search.

Example for route-finding problem: \(h = \) straight-line distance between two locations.

Greedy Search from Arad to Bucharest

Problems with Greedy Search

- Does find the suboptimal solutions
 - Would be Arad – Sibiu – Rimnicu Vilcea – Pitesti – Bucharest
- Can be misleading
 - What happens if we want to go from Iasi to Fagaras?
- Can be incomplete (if we do not detect duplicates) in the above case
Heuristics
The evaluation function h in greedy searches is also called a heuristic function or simply a heuristic.

- The word *heuristic* is derived from the Greek word ἡ ρεσοκτένω (note also: ἡ υτεροκάτα).
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963]
 - Heuristics are methods that focus the search without leading to incompleteness.

→ In all cases, the heuristic is problem-specific and focuses the search!

A*: Minimization of the Total Estimated Path Costs

A^* combines the greedy search with the uniform-search strategy.

$g(n) = \text{actual cost from the initial state to } n.$

$h(n) = \text{estimated cost from } n \text{ to the closest goal.}$

$f(n) = g(n) + h(n),$ the estimated cost of the cheapest solution through $n.$

Let $h^*(n)$ be the actual cost of the optimal path from n to the closest goal.

h is admissible if the following holds for all n:

$$h(n) \leq h^*(n)$$

We require that for A^*, h is admissible.

(Straight-line distance is admissible)

A* Search Example

A* Search from Arad to Bucharest
Contours in A*

Within the search space, contours arise in which for the given \(f \)-value all nodes are expanded.

Optimality of A*

Claim: The first solution found in *tree search* has the minimum path cost (for *graph search* it is more difficult)

Proof: Suppose there exists a goal node \(G \) with optimal path cost \(C^* \), but \(A^* \) has found first another node \(G_2 \) with \(g(G_2) > C^* \), i.e. \(f(G_2) > C^* \).

Let \(n \) be a node on the path from the start to \(G \) that has not yet been expanded.

Since \(h \) is admissible, we have
\[
f(n) = g(n) + h(n) \leq C^*.
\]

Since
\[
f(n) \leq C^* < f(G_2),
\]
\(n \) should have been expanded first!

Completeness and Complexity

Completeness: If a solution exists, \(A^* \) will find one, provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant \(\delta \) such that every operator has at least cost \(\delta \).

\(\rightarrow \) Only a finite number of nodes \(n \) with \(f(n) \leq f^* \).

Complexity: In the case where \(|h^*(n) - h(n)| \leq O(\log(h^*(n))) \), only a sub-exponential number of nodes will be expanded.

Normally, growth is exponential because the error is proportional to the path costs. So, modify to look for suboptimal solutions and allow non-admissible heuristics!

Iterative Deepening A* Search (IDA*)

Idea: A combination of IDS and \(A^* \). All nodes inside a contour are searched in a DFS manner.

```plaintext
function IDA*(problem) returns a solution sequence
inputs: problem, a problem
state: f-limit, the current f-cost limit
root: a node

root = MAKE-NODE(INITIAL-STATE(problem))
f-limit = f(root)

loop do
    solution, f-limit = DFS-CONSTRUCT(root, f-limit)
    if solution is non-null then return solution
    if f-limit = \( \infty \) then return failure; end

function DFS-CONSTRUCT(node, f-limit) returns a solution sequence and a new f-cost limit
inputs: node, a node
f-limit, the current f-cost limit
state: new f, the f-cost limit for the next contour, initially \( \infty \)

if f(node) < f-limit then return null, f-limit
if GOAL-TEST(problem)(node) then return node, f-limit
for each node \( x \) in SUCCESSORS(node) do
    new f = MIN(new f, f(node) + \( c(node, x) \))
    if solution is non-null then return solution, f-limit
next f = MIN(new f, f-limit)
end
return null, next f
```
RBFS: Recursive Best-First Search

Avoid re-evaluation of nodes but keep only $O(bd)$ nodes in memory.

function **Recursive-Best-First-Search**(problem) returns a solution, or failure

```plaintext
RBFS(problem, Make-Node(Initial-State(problem)), ∞)
```

function **RBFS**(problem, node, f_limit) returns a solution, or failure and a new f-cost limit

```plaintext
if Goal-Test[problem](state) then return node
successors ← Expand(node, problem)
if successors is empty then return failure, ∞
for each s in successors do
    $f[s] ← \max(g(s) + h(s), f[node])$
``` repeat

```plaintext
best ← the lowest $f$-value node in successors
if $f[best] > f[limit]$ then return failure, $f[best]$
alternative ← the second-lowest $f$-value among successors
result, $f[best] ← RBFS(problem, best, min(f.limit, alternative))$
if result ≠ failure then return result
```
Empirical Evaluation for IDS vs. A*

- $d =$ distance from goal
- Average over 100 instances

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>A*(h$_1$)</th>
<th>A*(h$_2$)</th>
<th>IDS</th>
<th>A*(h$_1$)</th>
<th>A*(h$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>247941</td>
<td>559</td>
<td>113</td>
<td>2.83</td>
<td>1.44</td>
<td>1.23</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>1301</td>
<td>211</td>
<td>–</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>3056</td>
<td>303</td>
<td>–</td>
<td>1.46</td>
<td>1.26</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>7276</td>
<td>676</td>
<td>–</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>18094</td>
<td>1219</td>
<td>–</td>
<td>1.48</td>
<td>1.28</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>39135</td>
<td>1641</td>
<td>–</td>
<td>1.48</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Local Search Methods

- In many problems, it is not possible to explore the search space systematically.
- If a quality measure (or objective function) for states is given, then local search can be used to find solutions.
- Begin with a randomly-chosen configuration/state and improve on it stepwise → Hill Climbing.
- Incomplete, but works for very large spaces.
- Has been used for IC design, scheduling, network optimization, …, 8-queens, …

Hill Climbing

```
function HILL-CLIMBING(problem) returns a solution state
  inputs: problem, a problem
  static: current, a node
          next, a node
  current ← MAKE-NODE(INITIAL-STATE(problem))
  loop do
    next ← a highest-valued successor of current
    if VALUE(next) < VALUE(current) then return current
    current ← next
  end
```

The Landscape: 2D Example
Example: 8 Queens

An 8-queens state with evaluation value 17 (violations), showing the value for all successors (when moving a queen in its column).

Problems with Local Search Methods

- **Local maxima**: The algorithm finds a sub-optimal solution.
- **Plateaus (shoulders, flat local maxima)**: Here, the algorithm can only explore at random (or exhaustively).
- **Ridges**: Similar to plateaus.

Solutions:

- **Restart randomly** when no progress is being made.
- **“Inject noise”** → random walk
- **Tabu search**: Do not apply the last \(n \) operators.

Which strategies (with which parameters) prove successful (within a problem class) can usually only empirically be determined.

Simulated Annealing

In the simulated annealing algorithm, “noise” is injected systematically: first a lot, then gradually less.

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
             schedule, a mapping from time to “temperature”
    static: current, a node
            next, a node
            T, a “temperature” controlling the probability of downward changes
    current = Make-Solution-State(initial problem)
    for t = 1 to do
        T = schedule(t)
        if T > 0 then
            next = a randomly selected successor of current
            Δ = VALUE(next[final problem]) - VALUE(current)
            if Δ > 0 then current = next
            else current = current with probability \( e^{-\frac{\Delta}{T}} \)
```

Has been used since the early 80’s for VSLI layout and other optimization problems.

Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by “cross over”, “mutation”, and “selection” successful solutions.

Ingredients:

- Coding of a solution into a string of symbols or bit-string
- A fitness function to judge the fitness of configurations
- A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.
Selection, Mutation, and Crossover

Example: 8-Queens

Case-Study: Path Planning in Robotic Soccer

Possible Approaches

- **Reactive**: Compute a motor control command based on current observation and goal location
 - try to move towards the goal in a straight line and drive around obstacles
 - May get stuck in local optima

- **Deliberative**: Generate a (optimal) path plan to the goal location
Simplifying Assumptions

- We do not want to / cannot solve the continuous control problem
- **Discretization**: 10 cm, π/16, ...
- Movements of other objects are known (or assumed to be irrelevant)
- Adaptation to dynamic change is achieved by **continuous re-planning**

Searching in 5D

- Consider the space generated by
 - location \((x,y)\)
 - orientation \((θ)\)
 - translational velocity \((v)\)
 - Rotational velocity \((ω)\)
- Search in this space using \(A^*\) in order to find the fastest way to the goal configuration
 - Computationally **too expensive** even on current hardware (250 msec for a 2m path, while we needed around 10 msec on a 100 MHz Pentium)

Further simplifications

- Consider only **2D space** (location) and search for shortest path (ignoring orientation)
- Assume **regular shape**: circle
- Reduce robot to point and use **obstacle growing**
- Apply **visibility graph** method
- Solve by using \(A^*\)

Obstacle Growing
Navigating Around Circles

Searching in the Visibility Graph

- The visibility map can now be searched as we can search in a road map using straight line distance as the heuristic estimate
- Note:
 - State space is very limited
 - Optimal solution is not necessarily an optimal solution for the original problem
 - Shortest path is neither the most safe nor the fastest path

Summary (1)

- **Heuristics** focus the search
- **Best-first search** expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal h we obtain a *greedy search*.
- The minimization of $f(n) = g(n) + h(n)$ combines uniform and greedy searches. When $h(n)$ is admissible, i.e. h^* is never overestimated, we obtain the **A^* search, which is complete and optimal**.
Summary (2)

• There are many variations of A*
• **Local search methods** only ever work on one state, attempting to improve it step-wise.
• **Genetic algorithms** imitate evolution by combining good solutions. General contribution not clear yet.
• There are no turnkey solutions, you always have to try and tweak