5. Constraint Satisfaction Problems

CSPs as Search Problems, Solving CSPs, Problem Structure

Wolfram Burgard & Bernhard Nebel
Contents

• What are CSPs?
• Backtracking Search for CSPs
• CSP Heuristics
• Constraint Propagation
• Problem Structure
Constraint Satisfaction Problems

• In search problems, the state does not have a structure (everything is in the data structure).

• In CSPs, states are defined by variable assignments of a given set of values \{d_1, d_2, \ldots, d_k\} to a given set of variables \{x_1, x_2, \ldots, x_n\}.

• The goal test is the test whether a set of constraints is satisfied by the variable assignment.

• *Formal representation language* with associated general inference algorithms.
Example: Map-Coloring

- **Variables**: WA, NT, SA, Q, NSW, V, T
- **Values**: \{red, green, blue\}
- **Constraints**: adjacent regions must have different colors, e.g. NSW \(\neq\) V

What is wrong here?
• **Solution assignment:**

 – \{ \text{WA} = \text{red}, \text{NT} = \text{green}, \text{Q} = \text{red}, \text{NSW} = \text{green}, \text{V} = \text{red}, \text{SA} = \text{blue}, \text{T} = \text{green} \}

 • Perhaps in addition \text{ACT} = \text{blue}
Constraint Graph

- Works for *binary* CSPs (otherwise hyper graph)
- **Nodes** = variables, **arcs** = constraints
- Graph structure can be important (e.g., connected components)

- **Note**: Our problem is 3-colorability for a planar graph
Variations

- Binary, ternary, or even higher arity
- Finite domains \((d\) values) \(\Rightarrow d^n\) possible variable assignments
- Infinite domains (reals, integers)
 - linear constraints solvable (in P if real)
 - nonlinear constraints unsolvable
Applications

- Timetabling (classes, rooms, times)
- Configuration (hardware, cars, …)
- Spreadsheets
- Scheduling
- Floor planning
- Frequency assignments
- …
Backtracking Search over Assignments

• Assign values to variables step by step (order does not matter)
• Consider only one variable per search node!
• DFS with single-variable assignments is called backtracking search
• Can solve n-queens for $n \approx 25$
Algorithm

function BACKTRACKING-SEARCH(csp) returns solution/failure
 return RECURSIVE-BACKTRACKING([], csp)

function RECURSIVE-BACKTRACKING(assigned, csp) returns solution/failure
 if assigned is complete then return assigned
 var ← SELECT-UNASSIGNED-VARIABLE(Variables[csp], assigned, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assigned, csp) do
 if value is consistent with assigned according to CONSTRAINTS[csp] then
 result ← RECURSIVE-BACKTRACKING([var = value|assigned], csp)
 if result ≠ failure then return result
 end
 return failure
Example (1)
Example (2)
Example (3)
Example (4)
Improving Efficiency: CSP Heuristics & Pruning Techniques

- **Variable ordering**: Which one to assign first?
- **Value ordering**: Which value to try first?
- Try to detect failures early on
- Try to exploit problem structure

- **Note**: all this is not problem-specific!
Variable Ordering: Most constrained first

• Most constrained variable:
 – choose the variable with the fewest legal values
 ➢ reduces branching factor!
Variable Ordering: Most Constraining Variable First

• Break ties among variables with the same number of possible values:
 – choose variable with the most constraints on remaining unassigned variables
 ➢ reduces branching factor in the next steps
Value Ordering: Least Constraining Value First

• Given a variable,
 – choose first a value that rules out the fewest values in the remaining unassigned variables
 ➢ We want to find an assignment that satisfies the constraints (of course, does not help if unsat.)
Rule Out Failures Early On: Forward Checking

- Whenever a value is assigned to a variable, values that are now illegal for other variables are removed
- $WA = \text{red}$, then NT cannot become red
- If all values are removed for one variable, we can stop
Forward Checking (1)

• Keep track of remaining values
• Stop if all have been removed
Forward Checking (2)

- Keep track of remaining values
- Stop if all have been removed
Forward Checking (3)

- Keep track of remaining values
- Stop if all have been removed
Forward Checking (4)

- Keep track of remaining values
- Stop if all have been removed
Forward Checking: Sometimes it Misses Something

- Forward Checking propagates information from assigned to unassigned variables
- However, there is no propagation between unassigned variables
Arc Consistency

• A directed arc $X \rightarrow Y$ is “consistent” iff
 – for every value x of X, there exists a value y of Y, such that (x,y) satisfies the constraint between X and Y
 – remove values from the domain of X to enforce arc-consistency
• **Arc consistency** detects failures earlier
• Can be used as preprocessing technique or as a propagation step during backtracking
Arc Consistency Example
AC3 Algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{ X_1, X_2, \ldots, X_n \}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 (X_i, X_j) ← REMOVE-FIRST(queue)
 if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then
 for each X_k in NEIGHBORS[X_i] do
 add (X_k, X_i) to queue

function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff we remove a value
 removed ← false
 for each x in DOMAIN[X_i] do
 if no value y in DOMAIN[X_j] allows (x, y) to satisfy the constraint between X_i and X_j
 then delete x from DOMAIN[X_i]; removed ← true
 return removed
Problem Structure (1)

- CSP has two independent components
- Identifiable as connected components of constraint graph
- Can reduce the search space dramatically
Problem Structure (2): Tree-structured CSPs

- If the CSP graph is a tree, then it can be solved in $O(nd^2)$
 - General CSPs need in the worst case $O(d^n)$
- Idea: Pick root, order nodes, apply arc consistency from leaves to root, and assign values starting at root
Problem Structure (2): Tree-structured CSPs

- Apply arc-consistency to (X_i, X_k), when X_i is the parent of X_k, for all $k=n$ downto 2.
- Now on can start at X_1 assigning values from the remaining domains without creating any conflict.
- Algorithm linear in n
Problem Structure (3): Almost Tree-structured

- **Conditioning**: Instantiate a variable and prune values in neighboring variables

- **Cutset conditioning**: Instantiate (in all ways) a set of variables in order to reduce the graph to a tree (note: finding minimal cutset is NP-hard)
Another Method: Tree Decomposition (1)

- Decompose problem into a set of connected sub-problems, where two sub-problems are connected when they share a constraint
- Solve sub-problems independently and combine solutions
Tree Decomposition (2)

- A tree decomposition must satisfy the following conditions:
 - Every variable of the original problem appears in at least one sub-problem
 - Every constraint appears in at least one sub-problem
 - If a variable appears in two sub-problems, it must appear in all sub-problems on the path between the two sub-problems
 - The connections form a tree
Tree Decomposition (3)

- Consider sub-problems as new mega-nodes, which has values defined by the solutions to the sub-problems
- Use technique for tree-structured CSP to find an overall solution (constraint is to have identical values for the same variable).
Tree Width

- **Tree width of a tree** decomposition = size of largest sub-problem minus 1
- **Tree width of a graph** is minimal tree width over all possible tree decompositions
- If a graph has tree width \(w \) and we know a tree decomposition with that width, we can solve the problem in \(O(nd^{w+1}) \)
- **Finding a tree decomposition** with minimal tree width is **NP-hard**
Summary & Outlook

- **CSPs** are a special kind of search problem:
 - states are value assignments
 - goal test is defined by constraints
- **Backtracking** = DFS with one variable assigned per node. Other intelligent backtracking techniques possible
- **Variable/value ordering** heuristics can help dramatically
- **Constraint propagation** prunes the search space
- **Path-consistency** is a constraint propagation technique for triples of variables
- **Tree structure** of CSP graph simplifies problem significantly
- **Cutset conditioning** and **tree decomposition** are two ways to transform part of the problem into a tree
- CSPs can also be solved using **local search**