Foundations of AI

10. Knowledge Representation: Modeling with Logic

Concepts, Actions, Time, & all the rest

Wolfram Burgard & Bernhard Nebel
Contents

• Knowledge Representation and Reasoning
• Concepts & Description logics
• Logical agents for the WUMPUS World
• Situation calculus
• The frame problem
• Time intervals and their description
Knowledge Representation and Reasoning

• Often, our agents need knowledge before they can start to act intelligently
• They then also need some reasoning component to exploit the knowledge they have
• Examples:
 – Knowledge about the important concepts in a domain
 – Knowledge about actions one can perform in a domain
 – Knowledge about temporal relationships between events
 – Knowledge about the world and how properties are related to actions
Categories and Objects

• We need to describe the objects in our world using **categories**
• Necessary to establish a common category system for different applications (in particular on the web)
• There are a number of quite general categories everybody and every application uses
The Upper Ontology: A General Category Hierarchy
Description Logics

• How to describe more specialized things?
• Use definitions and/or necessary conditions referring to other already defined concepts:
 – a parent is a human with at least one child
• More complex description:
 – a proud-grandmother is a human with at least two children that are in turn parents whose children are all doctors
Reasoning Services in Description Logics

• **Subsumption**: Determine whether one description is more general than (subsumes) the other
• **Classification**: Create a subsumption hierarchy
• **Satisfiability**: Is a description satisfiable?
• **Instance relationship**: Is a given object instance of a concept description?
• **Instance retrieval**: Retrieve all objects for a given concept description
Special Properties of Description Logics

- Semantics of description logics can be given using ordinary PL1
 - Alternatively, DLs can be considered as modal logics
- Reasoning for most DLs is much more efficient than for PL1
- Nowadays, W3C standards such as OWL (formerly DAML+OIL) are based on description logics
Logic-Based Agents That Act

```
function KB-AGENT(percept) returns an action
    static: KB, a knowledge base
    t, a counter, initially 0, indicating time
    TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
    action ← ASK(KB, MAKE-ACTION-QUERY(t))
    TELL(KB, MAKE-ACTION-SENTENCE(action, t))
    t ← t + 1
    return action
```

Query (Make-Action-Query): \(\exists x \ Action(a,t) \)

A variable assignment for \(x \) in the WUMPUS world example should give the following answers:

- turn (right), turn(left), forward, shoot, grab, release, climb.
Reflex Agents

... only react to percepts.

Example of a percept statement (at time 5):

\[\text{Percept(stench, breeze, glitter, none, none, 5)} \]

1. Step: Abstraction of the basic properties

\[\forall b, g, u, c, t \ [\text{Percept(stench, b, g, u, c, t)} \Rightarrow \text{Stench(t)}] \]
\[\forall s, g, u, c, t \ [\text{Percept(s, breeze, g, u, c, t)} \Rightarrow \text{Breeze(t)}] \]
\[\forall s, b, u, c, t \ [\text{Percept(s, b, glitter, u, c, t)} \Rightarrow \text{AtGold(t)}] \]

2. Step: Choice of action

\[\forall t \ [\text{AtGold(t)} \Rightarrow \text{Action(grab, t)}] \]

\[\ldots \]

But: Our reflex agent doesn’t know when it should climb out of the cave and cannot avoid an infinite loop.
Model-Based Agents

... have an internal model

• of all basic aspects of their environment,
• of the executability and effects of their actions,
• of further basic laws of the world,
• of their own goals.

Important aspect: How does the world change?

→ Situation calculus: (McCarthy 63).
Situation Calculus

- A way to describe **dynamic worlds** with PL1.
- **States** are represented by terms.
- The world is in state s and can only be altered through the execution of an **action**: $do(a,s)$ is the **resulting situation**, if a is executed.
- Actions have **preconditions** and are described by their **effects**.
- Relations whose truth value changes over time are called **fluents**. Represented through a predicate $Holding$ with two arguments: the fluent and a state term. $Holding(\chi,s)$ means, for example, that in situation s, the property χ holds.
Example: WUMPUS-World

Let s_0 be the initial situation and

$$s_1 = \text{do}(\text{forward}, s_0), \quad s_2 = \text{do}(\text{turn(right)}, s_1), \quad s_3 = \text{do}(\text{forward}, s_2)$$
Description of Actions

Preconditions: In order to pick something up, it must be both present and portable:

\[\forall x, s \ [\text{Poss(grab}(x), s) \iff \text{Present}(x, s) \land \text{Portable}(x, s)] \]

In the WUMPUS-World:

\[\text{Portable(gold), } \forall s \ [\text{AtGold}(s) \Rightarrow \text{Present}(\text{gold}, s)] \]

Positive effect axiom:

\[\forall x, s \ [\text{Poss(grab}(x), s) \Rightarrow \text{Holding}(x, \text{do(grab}(x), s))] \]

Negative effect axiom:

\[\forall x, s \ \neg \text{Holding}(x, \text{do(release}(x), s)) \]
The Frame Problem

We had: \textit{Holding(gold, s_0)}.

Following situation: \textit{\neg Holding(gold, do(release(gold), s_0))}?

We had: \textit{\neg Holding(gold, s_0)}.

Following situation: \textit{\neg Holding(gold, do(turn(right), s_0))}?

• We must also specify which \textit{fluents} remain unchanged!

• The frame problem: \textbf{Specification of the properties that do not change as a result of an action.}

→ \textbf{Frame axioms} must also be specified.
Number of Frame Axioms

\[\forall a, x, s \ [Holding(x, s) \land (a \neq \text{release}(x)) \Rightarrow Holding(x, do(a, s))] \]

\[\forall a, x, s \ [\neg Holding(x, s) \land \{(a \neq \text{grab}(x)) \lor \neg \text{Poss(grab(x), s)}\} \Rightarrow \neg Holding(x, do(a, s))] \]

Can be very expensive in some situations, since \(O(|F| \times |A|)\) axioms must be specified, F being the set of fluents and A being the set of actions.
Successor-State Axioms

A more elegant way to solve the frame problem is to fully describe the successor situation:

\[\text{true after action} \iff [\text{action made it true} \lor \text{already true and the action did not falsify it}] \]

Example for \textit{grab}:

\[\forall a, x, s [\text{Holding}(x, \text{do}(a, s)) \iff ((a = \text{grab}(x) \land \text{Poss}(a, s)) \lor (\text{Holding}(x, s) \land a \neq \text{release}(x)))] \]

Can also be automatically compiled by only giving the effect axioms (and then applying \textit{explanation closure}). Here we suppose that only certain effects can appear.
Limits of this Version of Situation Calculus

• No explicit **time**. We cannot discuss how long an action will require, if it is executed.
• **Only one agent**. In principle, however, several agents can be modeled.
• **No parallel** execution of actions.
• **Discrete situations**. No continuous actions, such as moving an object from A to B.
• **Closed world**. Only the agent changes the situation.
• **Determinism**. Actions are always executed with complete certainty.
→ Nonetheless, sufficient for many situations.
Qualitative Descriptions of Temporal Relationships

• We can describe the temporal occurrence of event/actions:
 – absolute by using a date/time system
 – relative with respect to other event occurrences
 – quantitatively, using time measurements (5 secs)
 – qualitatively, using comparisons (before/overlap)
Allen’s Interval Calculus

- Allen proposed a calculus about relative order of time intervals
- Allows us to describe, e.g.,
 - Interval \(I \) occurs before interval \(J \)
 - Interval \(J \) occurs before interval \(K \)
- and to conclude
 - Interval \(I \) occurs before interval \(K \)
- 13 jointly exhaustive and pair-wise disjoint relations between intervals
Allen’s 13 Interval Relations

I < J, J > I
before/after

I < J, J s⁻¹ I
starts

I m J, J m⁻¹ I
meets

I o J, J o⁻¹ I
overlaps

I d J, J d⁻¹ I
during

I f J, J f⁻¹ I
finishes

I = J
Examples

• Using Allen’s relation system one can describe temporal configurations as follows:
 – $X < Y, Y \circ Z, Z > X$

• One can also use disjunctions (unions) of temporal relations:
 – $X (\langle, m \rangle Y, Y (o, s) Z, Z > X$
Reasoning in Allen’s Relations System

• How do we reason in Allen’s system
 – Checking whether a set of formulae is satisfiable
 – Checking whether a temporal formula follows logically

➢ Use a constraint propagation technique for CSPs with infinite domains (3-consistency), based on composing relations
Constraint Propagation

Do that for every triple until nothing changes anymore, then CSP is 3-consistent.

\[
\begin{align*}
X &< Y \quad \text{and} \quad Z = X \quad Z \\
X &< Y \quad o\quad Z = X \quad Z \\
X \quad m\quad Y \quad s\quad Z = X \quad Z \\
X \quad m\quad Y \quad o\quad Z = X \quad Z
\end{align*}
\]
Concluding Remarks: Use of Logical Formalisms

• In many (but not all) cases, full inference in PL1 is simply too slow (and therefore too unreliable).

• Often, special (logic-based) representational formalisms are designed for specific applications, for which specific inference procedures can be used. Examples:
 – Description logics for representing conceptual knowledge.
 – James Allen’s time interval calculus for representing qualitative temporal knowledge.
 – Planning: Instead of situation calculus, this is a specialized calculus (STRIPS) that allows us to address the frame problem.

→ Generality vs. efficiency
→ In every case, logical semantics is important!