Foundations of AI

4. Informed Search Methods

- Heuristics, Local Search Methods, Genetic Algorithms
 Luc De Raedt and Wolfram Burgard and Bernhard Nebel

Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of how “good” a node is.

Informed Search: Knowledge of the quality of a given node in the form of an evaluation function \(h \), which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the “best” (smallest) \(h \)-value.

General Algorithm

```
function BEST-FIRST-SEARCH( problem, EVAL-FN) returns a solution sequence
    inputs: problem, a problem
             Eval-Fn, an evaluation function
    Queueing-Fn ← a function that orders nodes by EVAL-FN
    return GENERAL-SEARCH(problem, Queueing-Fn)
```

When \(Eval-Fn \) is always correct, we don’t need to search!
Greedy Search

A possible way to judge the “worthiness” of a node is to estimate its distance to the goal.

\[h(n) = \text{estimated distance from } n \text{ to the goal} \]

The only real restriction is that \(h(n) = 0 \) if \(n \) is a goal.

A best-first search with this function is called a \textit{greedy best-first search}.

Example for \textit{route-finding} problem: \(h = \) straight-line distance between two locations.

Greedy Search from \textit{Arad} to \textit{Bucharest}

Greedy Search Example:
From \textit{Arad} to \textit{Bucharest}

Problems with Greedy Search

- Does find \textit{suboptimal solutions}
 - Would be \textit{Arad} – \textit{Sibiu} – \textit{Rimnicu Vilcea} – \textit{Pitești} – \textit{Bucharest}

- Can be \textit{misleading}
 - What happens if we want to go from \textit{lasi} to \textit{Fagaras}?

- Can be \textit{incomplete} (if we do not detect duplicates) in the above case
Heuristics

The evaluation function h in greedy searches is also called a **heuristic function** or simply a **heuristic**.

- The word *heuristic* is derived from the Greek word ἴσος ἰσός (note also: ἴσος ἰσός).
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963].
 - Heuristics are methods that focus the search without leading to incompleteness.

→ In all cases, the heuristic is **problem-specific** and focuses the search!

A*: Minimization of the Total Estimated Path Costs

A* combines the greedy search with the uniform-search strategy.

$g(n) =$ actual cost from the initial state to n.

$h(n) =$ estimated cost from n to the closest goal.

$f(n) = g(n) + h(n)$, the estimated cost of the cheapest solution through n.

Let $h^*(n)$ be the **actual cost** of the optimal path from n to the closest goal.

h is **admissible** if the following holds for all n:

$$h(n) \leq h^*(n)$$

We require that for A*, h is admissible.

(Straight-line distance is admissible)

A* Search from Arad to Bucharest

A* Search Example

[Diagram showing the A* search example with cities and distances]
Optimality of A*

Claim: The first solution found in tree search has the minimum path cost (for graph search it is more difficult)

Proof: Suppose there exists a goal node G with optimal path cost C^*, but A^* has found first another node G_2 with $g(G_2) > C^*$, i.e. $f(G_2) > C^*$. Let n be a node on the path from the start to G that has not yet been expanded.

Since h is admissible, we have

$$f(n) = g(n) + h(n) \leq C^*.$$

Since

$$f(n) \leq C^* < f(G_2).$$

n should have been expanded first!

Graph Search

Two remedies:

- discard the more expensive path when revisiting node
- ensure that first path found to node is optimal (cf. uniform-cost)

Monotonicity/Consistency: a heuristic is consistent iff

$$\forall n, n' \in \text{succ}(n) : h(n) \leq h(n') + c(n, a, n')$$

Every consistent heuristic is admissible (exercise)

A* using graph search is optimal if heuristic is consistent

Monotonicity

If h consistent then the values of f along a path are non-decreasing:

- A (h:4) \hspace{1em} 5 + 4 = 9
- B (h:2) \hspace{1em} 6 + 2 = 8

This throws away information !!

We already knew that total cost on this path to the goal is at least 9 (knowledge in node A)

Contours in A*

Within the search space, contours arise in which for the given f-value all nodes are expanded.

Contours at $f = 380, 400, 420$
Completeness and Complexity

Completeness: If a solution exists, A* will find one, provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant δ such that every operator has at least cost δ.

\rightarrow Only a finite number of nodes n with $f(n) \leq f^*$.

Complexity: In the case where $|h^*(n) - h(n)| \leq O(\log(h^*(n)))$, only a sub-exponential number of nodes will be expanded.

Normally, growth is exponential because the error is proportional to the path costs. So, modify to look for suboptimal solutions and allow non-admissible heuristics!

Iterative Deepening A* Search (IDA*)

Idea: A combination of IDS and A*. All nodes inside a contour are searched in a DFS manner.

```
function IDA*(problem) returns a solution sequence
inputs: problem, a problem
status: f/limit, the current f/ limit
root, a node

root = MAKE-NODE(INITIAL-STATE[problem])
(f/limit = f/COST[problem])

loop do
    solution, f/limit = DFS-CONSTRUCT(root, f/limit)
    if solution is not null then return solution
    if f/limit = $\infty$ then return failure; end

function DFS-CONSTRUCT(node, f/limit) returns a solution sequence and a new f/ limit
inputs: node, a node
(f/limit, the current f/ limit)
status: node, the f/limit i.e the next contour, initially $\infty$

if f/limit < f(node) then return null, f/limit
else if GOAL-TEST(state[node]) then return node, f/limit
for each node x in SUCCESSOR[node] do
    new f/limit = MIN(f/limit, f(x))
    if solution is not null then return solution, f/limit
    next f/limit = new f/limit; end
return null, next f/limit
```

RBFS: Recursive Best-First Search

Avoid re-evaluation of nodes but keep only $O(bd)$ nodes in memory.

```
function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
RBFS(problem, MAKE-NODE(INITIAL-STATE[problem]), $\infty$)

function RBFS(problem, node, f/limit) returns a solution, or failure and a new f/ cost limit
  if GOAL-TEST(state[node]) then return node
  successors ← EXPAND(node, problem)
  if successors is empty then return failure, $\infty$
  for each s in successors do
    f[s] ← max(g(s) + h(s), f[node])
  repeat
    best ← the lowest f-value node in successors
    if f[best] > f/limit then return failure, f[best]
    alternative ← the second-lowest f-value among successors
    result, f[best] ← RBFS(problem, best, min(f/limit, alternative))
    if result ≠ failure then return result
```

RBFS Example
How to Design a Heuristic

- Simplify the problem (by removing restrictions), creating a **relaxation**:
 - so that it becomes **easy to solve**
 - usually leading to **shorter solutions**
 - and making it easy to **determine optimal solutions for the relaxation**

- **Examples:**
 - straight line distance
 - simplify movement restrictions in multi-body problems (ignore collisions)
 - ignore negative effects

Example Heuristics

- h_1 = the number of tiles in the wrong position
- h_2 = the sum of the distances of the tiles from their goal positions (Manhattan distance)

Empirical Evaluation for IDS vs. A*

- d = distance from goal
- Average over 100 instances

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>47.27</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>36484</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>347384</td>
<td>539</td>
<td>113</td>
<td>2.83</td>
<td>1.44</td>
<td>1.23</td>
</tr>
<tr>
<td>16</td>
<td>1301</td>
<td>211</td>
<td>–</td>
<td>–</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>3056</td>
<td>363</td>
<td>–</td>
<td>–</td>
<td>1.46</td>
<td>1.26</td>
</tr>
<tr>
<td>20</td>
<td>7276</td>
<td>676</td>
<td>–</td>
<td>–</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>22</td>
<td>18094</td>
<td>1219</td>
<td>–</td>
<td>–</td>
<td>1.48</td>
<td>1.28</td>
</tr>
<tr>
<td>24</td>
<td>39135</td>
<td>1641</td>
<td>–</td>
<td>–</td>
<td>1.48</td>
<td>1.26</td>
</tr>
</tbody>
</table>

How to choose among heuristics?

If $\forall n : h_2(n) \geq h_1(n)$ and h_1, h_2 both admissible

Then h_2 dominates h_1 and is better for search

- Holds for our illustration
- The more dominant the heuristic the better it approximates the real cost.
- Therefore, given 2 admissible heuristics,

Define $\forall n : h(n) = \max(h_1(n), h_2(n))$

h will dominate h_1, h_2
Local Search Methods

- In many problems, it is not possible to explore the search space systematically.
- If a quality measure (or objective function) for states is given, then local search can be used to find solutions.
- Begin with a randomly-chosen configuration/state and improve on it stepwise → Hill Climbing.
- Incomplete, but works for very large spaces.
- Has been used for IC design, scheduling, network optimization, …, 8-queens, …

Hill Climbing

function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
 next, a node

current ← MAKE-NODE(INITIAL-STATE(problem))
loop do
 next ← a highest-valued successor of current
 if VALUE(next) < VALUE(current) then return current
 current ← next
end

The Landscape: 2D Example

The objective function has a global maximum and local maxima. The state space shows the current state.

Example: 8 Queens

An 8-queens state with evaluation value 17 (violations), showing the value for all successors (when moving a queen in its column).
Problems with Local Search Methods

- **Local maxima**: The algorithm finds a sub-optimal solution.
- **Plateaus (shoulders, flat local maxima)**: Here, the algorithm can only explore at random (or exhaustively).
- **Ridges**: Similar to plateaus.

Solutions:
- **Restart randomly** when no progress is being made.
- **“Inject noise” → random walk**
- **Tabu search**: Do not apply the last \(n \) operators.

Which strategies (with which parameters) prove successful (within a problem class) can usually only empirically be determined.

Simulated Annealing

In the simulated annealing algorithm, “noise” is injected systematically: first a lot, then gradually less.

```plaintext
Function SIMULATED-ANNEALING(problem, schedule) returns a solution state
Input: problem, schedule
Output: state
Defined:
- schedule : mapping from time to “temperature”
- state : current state

Initial:
- current \( \rightarrow \) Max-Evolve-Best-Replace(problem)
- t \( \leftarrow 1 \)

Do:
  - If \( t(t) \) then return current
  - \( \Delta x \rightarrow \) a randomly selected movement of current
  - \( \Delta E \rightarrow E(x) - E(\text{current}) \)
  - If \( \Delta E \ll 0 \text{ or } \exp(-\Delta E) \geq U[0,1] \)
    - current \( \rightarrow \text{new} \) with probability \( \exp(-\Delta E) \)
  - t \( \leftarrow t + 1 \)
```

Has been used since the early 80’s for VSLI layout and other optimization problems.

Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by “cross over”, “mutation”, and “selection” successful solutions.

Ingredients:
- Coding of a solution into a **string of symbols** or bit-string
- A fitness function to judge the **fitness** of configurations
- A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.

Selection, Mutation, and Crossover

- **Selection**: According to fitness function and mating.
- **Crossover**: Determination of crossover point and unification.
- **Mutation**: With a fixed small probability, something in the bit string is changed.
Possible Approaches

- **Reactive:** Compute a motor control command based on current observation and goal location
 - try to move towards the goal in a straight line and drive around obstacles
 - May get stuck in local optima
- **Deliberative:** Generate a (optimal) path plan to the goal location

Simplifying Assumptions

- We do not want to / cannot solve the continuous control problem
- **Discretization:** 10 cm, $\pi/16$, …
- Movements of other objects are known (or assumed to be irrelevant)
- Adaptation to dynamic change is achieved by **continuous re-planning**
Searching in 5D

- Consider the space generated by
 - location \((x, y)\)
 - orientation \((\theta)\)
 - translational velocity \((v)\)
 - Rotational velocity \((\omega)\)
- Search in this space using \(A^*\) in order to find the fastest way to the goal configuration
 - Computationally too expensive even on current hardware (250 msec for a 2m path, while we needed around 10 msec on a 100 MHz Pentium)

Further simplifications

- Consider only 2D space (location) and search for shortest path (ignoring orientation)
- Assume regular shape: circle
- Reduce robot to point and use obstacle growing
- Apply visibility graph method
- Solve by using \(A^*\)
The Visibility Graph: Compute all common visible tangents

Searching in the Visibility Graph

- The visibility map can now be searched as we can search in a road map using straight line distance as the heuristic estimate.
- Note:
 - State space is very limited
 - Optimal solution is not necessarily an optimal solution for the original problem
 - Shortest path is neither the most safe nor the fastest path

Summary (1)

- **Heuristics** focus the search
- **Best-first search** expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal h we obtain a greedy search.
- The minimization of $f(n) = g(n) + h(n)$ combines uniform and greedy searches. When $h(n)$ is admissible, i.e. h^* is never overestimated, we obtain the A* search, which is complete and optimal.

Summary (2)

- There are many variations of A*
- **Local search methods** only ever work on one state, attempting to improve it step-wise.
- **Genetic algorithms** imitate evolution by combining good solutions. General contribution not clear yet.
- There are no turnkey solutions, you always have to try and tweak