Foundations of AI

4. Informed Search Methods

Heuristics, Local Search Methods, Genetic Algorithms

Luc De Raedt and Wolfram Burgard and Bernhard Nebel
Contents

• Best-First Search
• A* and IDA*
• Local Search Methods
• Genetic Algorithms
Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of how “good” a node is.

Informed Search: Knowledge of the quality of a given node in the form of an *evaluation function* h, which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the “best” (smallest) h-value.
General Algorithm

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem
 Eval-Fn, an evaluation function

Queueing-Fn ← a function that orders nodes by Eval-Fn
return GENERAL-SEARCH(problem, Queueing-Fn)

When Eval-Fn is always correct, we don’t need to search!
Greedy Search

A possible way to judge the “worthiness” of a node is to estimate its distance to the goal.

\[h(n) = \text{estimated distance from } n \text{ to the goal} \]

The only real restriction is that \(h(n) = 0 \) if \(n \) is a goal.

A best-first search with this function is called a greedy best-first search.

Example for route-finding problem: \(h = \) straight-line distance between two locations.
Greedy Search Example:
From Arad to Bucharest

Straight-line distance to Bucharest:
- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobreta: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 98
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
Greedy Search from Arad to Bucharest
Problems with Greedy Search

• Does find suboptimal solutions
 – Would be Arad – Sibiu – Rimnicu Vilcea – Pitesti – Bucharest

• Can be misleading
 – What happens if we want to go from Iasi to Fagaras?

• Can be incomplete (if we do not detect duplicates) in the above case
Heuristics

The evaluation function h in greedy searches is also called a **heuristic function** or simply a **heuristic**.

- The word *heuristic* is derived from the Greek word ἡευρισκεῖν (note also: Ηευρισκέιν)
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963]
 - Heuristics are methods that focus the search without leading to incompleteness.

→ In all cases, the heuristic is *problem-specific* and *focuses* the search!
A*: Minimization of the Total Estimated Path Costs

A* combines the greedy search with the uniform-search strategy.

\(g(n) = \text{actual cost} \) from the initial state to \(n \).

\(h(n) = \text{estimated cost} \) from \(n \) to the closest goal.

\(f(n) = g(n) + h(n) \), the estimated cost of the cheapest solution through \(n \).

Let \(h^*(n) \) be the \textit{actual cost} of the optimal path from \(n \) to the closest goal.

\(h \) is \textit{admissible} if the following holds for all \(n \):

\[
h(n) \leq h^*(n)
\]

We require that for A*, \(h \) is admissible.

(Straight-line distance is admissible)
A* Search Example
A* Search from Arad to Bucharest
Optimality of A*

Claim: The first solution found in tree search has the minimum path cost (for graph search it is more difficult)

Proof: Suppose there exists a goal node G with optimal path cost C^*, but A* has found first another node G_2 with $g(G_2) > C^*$, i.e. $f(G_2) > C^*$.

Let n be a node on the path from the start to G that has not yet been expanded.

Since h is admissible, we have

$$f(n) = g(n) + h(n) \leq C^*.$$

Since

$$f(n) \leq C^* < f(G_2),$$

n should have been expanded first!
Graph Search

Two remedies:

- discard the more expensive path when revisiting node
- ensure that first path found to node is optimal (cf. uniform-cost)

Monotonicity/Consistency: a heuristic is consistent iff

\[
\forall \text{nodes } n, n' \in \text{succ}(n): h(n) \leq h(n') + c(n, a, n')
\]

Every consistent heuristic is admissible (exercise)

A* using graph search is optimal if heuristic is consistent
Monotonicity

If h consistent then the values of f along a path are non-decreasing:

This throws away information!!

We already knew that total cost on this path to the goal is at least 9 (knowledge in node A)
Contours in A*

Within the search space, contours arise in which for the given f-value all nodes are expanded.

Contours at $f = 380, 400, 420$
Completeness and Complexity

Completeness: If a solution exists, A* will find one, provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant δ such that every operator has at least cost δ.

\rightarrow Only a finite number of nodes n with $f(n) \leq f^*$.

Complexity: In the case where $|h^*(n) - h(n)| \leq O(\log(h^*(n)))$, only a sub-exponential number of nodes will be expanded.

Normally, growth is exponential because the error is proportional to the path costs. So, modify to look for suboptimal solutions and allow non-admissible heuristics!
Iterative Deepening A* Search (IDA*)

Idea: A combination of IDS and A*. All nodes inside a contour are searched in a DFS manner

```plaintext
function IDA*(problem) returns a solution sequence
inputs: problem, a problem
static: f-limit, the current f- COST limit
    root, a node

root ← MAKE-NODE(INITIAL-STATE[problem])
f-limit ← f- COST(root)
loop do
    solution, f-limit ← DFS-CONTOUR(root,f-limit)
    if solution is non-null then return solution
    if f-limit = ∞ then return failure; end

function DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f- COST limit
inputs: node, a node
    f-limit, the current f- COST limit
static: next-f, the f- COST limit for the next contour, initially ∞

if f- COST[node] > f-limit then return null, f- COST[node]
if GOAL-TEST(problem)(STATE[node]) then return node, f-limit
for each node s in SUCCESSORS(node) do
    solution, new-f ← DFS-CONTOUR(s, f-limit)
    if solution is non-null then return solution, f-limit
    next-f ← MIN(next-f, new-f); end
return null, next-f
```
RBFS: Recursive Best-First Search

Avoid re-evaluation of nodes but keep only $O(bd)$ nodes in memory

function Recursive-Best-First-Search(problem) returns a solution, or failure
 RBFS(problem, MAKE-NODE(INITIAL-STATE[problem]), ∞)

function RBFS(problem, node, f_limit) returns a solution, or failure and a new f-cost limit
 if GOAL-Test[problem](state) then return node
 successors ← EXPAND(node, problem)
 if successors is empty then return failure, ∞
 for each s in successors do
 $f[s] \leftarrow \max(g(s) + h(s), f[node])$
 repeat
 best ← the lowest f-value node in successors
 if $f[best] > f_limit$ then return failure, $f[best]$
 alternative ← the second-lowest f-value among successors
 result, $f[best] \leftarrow$ RBFS(problem, best, min($f_limit, alternative$))
 if result ≠ failure then return result
RBFS Example

(a) After expanding Arad, Sibiu, Râșnov, Vîlcea

(b) After unwinding back to Sibiu and expanding Fâgapas

(c) After switching back to Râșnov, Vîlcea and expanding Pitești
How to Design a Heuristic

• Simplify the problem (by removing restrictions), creating a **relaxation**:
 – so that it becomes **easy to solve**
 – usually leading to **shorter solutions**
 – and making it easy to **determine optimal solutions** for the relaxation

• Examples:
 – straight line distance
 – simplify movement restrictions in multi-body problems (ignore collisions)
 – ignore negative effects
Example Heuristics

\[h_1 = \text{the number of tiles in the wrong position} \]
\[h_2 = \text{the sum of the distances of the tiles from their goal positions} \]
(Manhattan distance)
Empirical Evaluation for IDS vs. A

- \(d = \text{distance from goal} \)
- Average over 100 instances

<table>
<thead>
<tr>
<th>(d)</th>
<th>IDS</th>
<th>(A^*(h_1))</th>
<th>(A^*(h_2))</th>
<th>(d)</th>
<th>IDS</th>
<th>(A^*(h_1))</th>
<th>(A^*(h_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
<td>113</td>
<td>2.83</td>
<td>1.44</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>1301</td>
<td>211</td>
<td>–</td>
<td>1.45</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>3056</td>
<td>363</td>
<td>–</td>
<td>1.46</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>7276</td>
<td>676</td>
<td>–</td>
<td>1.47</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>18094</td>
<td>1219</td>
<td>–</td>
<td>1.48</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>39135</td>
<td>1641</td>
<td>–</td>
<td>1.48</td>
<td>1.26</td>
<td></td>
</tr>
</tbody>
</table>
How to choose among heuristics?

If \(\forall n : h_2(n) \geq h_1(n) \) and \(h_1, h_2 \) both admissible
Then \(h_2 \) dominates \(h_1 \) and is better for search

• Holds for our illustration
• The more dominant the heuristic the better it approximates the real cost.
• Therefore, given 2 admissible heuristics,

Define \(\forall n : h(n) = \max(h_1(n), h_2(n)) \)

\(h \) will dominate \(h_1, h_2 \)
Local Search Methods

• In many problems, it is not possible to explore the search space systematically.
• If a quality measure (or objective function) for states is given, then local search can be used to find solutions.
• Begin with a randomly-chosen configuration/state and improve on it stepwise → Hill Climbing.
• Incomplete, but works for very large spaces.
• Has been used for IC design, scheduling, network optimization, … , 8-queens, …
Hill Climbing

function HILL-CLIMBING(problem) returns a solution state
 inputs: problem, a problem
 static: current, a node
 next, a node

 current ← MAKE-NODE(INITIAL-STATE[problem])
 loop do
 next ← a highest-valued successor of current
 if VALUE[next] < VALUE[current] then return current
 current ← next
 end
The Landscape: 2D Example
Example: 8 Queens

An 8-queens state with evaluation value 17 (violations), showing the value for all successors (when moving a queen in its column)
Problems with Local Search Methods

- **Local maxima**: The algorithm finds a sub-optimal solution.
- **Plateaus (shoulders, flat local maxima)**: Here, the algorithm can only explore at random (or exhaustively)
- **Ridges**: Similar to plateaus.

Solutions:
- **Restart randomly** when no progress is being made.
- “Inject noise” \rightarrow random walk
- **Tabu search**: Do not apply the last n operators.

Which strategies (with which parameters) prove successful (within a problem class) can usually only empirically be determined.
Simulated Annealing

In the simulated annealing algorithm, “noise” is injected systematically: first a lot, then gradually less.

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
    schedule, a mapping from time to “temperature”
    static: current, a node
    next, a node
    T, a “temperature” controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T=0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] – VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^{ΔE/T}
```

Has been used since the early 80’s for VSLI layout and other optimization problems.
Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by “crossover”, “mutation”, and “selection” successful solutions.

Ingredients:

- Coding of a solution into a string of symbols or bit-string
- A fitness function to judge the fitness of configurations
- A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.
Selection, Mutation, and Crossover

- Population
 - Selection: Selection of individuals according to fitness function and mating
 - Crossover: Determination of crossover point and recombination
 - Mutation: With a fixed small probability, something in the bit string is changed
Example: 8-Queens

(a) Initial Population
(b) Fitness Function
(c) Selection
(d) Cross-Over
(e) Mutation
Case-Study: Path Planning in Robotic Soccer
Possible Approaches

• **Reactive**: Compute a motor control command based on current observation and goal location
 – try to move towards the goal in a straight line and drive around obstacles
 – May get stuck in local optima

• **Deliberative**: Generate a (optimal) path plan to the goal location
Simplifying Assumptions

• We do not want to / cannot solve the continuous control problem
• Discretization: 10 cm, $\pi/16$, …
• Movements of other objects are known (or assumed to be irrelevant)
• Adaptation to dynamic change is achieved by continuous re-planning
Searching in 5D

• Consider the space generated by
 – location \((x,y)\)
 – orientation \((\theta)\)
 – translational velocity \((v)\)
 – Rotational velocity \((\omega)\)

• Search in this space using \(A^*\) in order to find the fastest way to the goal configuration
 – Computationally too expensive even on current hardware (250 msec for a 2m path, while we needed around 10 msec on a 100 MHz Pentium)
Further simplifications

• Consider only 2D space (location) and search for shortest path (ignoring orientation)
• Assume regular shape: circle
• Reduce robot to point and use obstacle growing
• Apply visibility graph method
• Solve by using A*
Obstacle Growing
Navigating Around Circles
The Visibility Graph:
Compute all common visible tangents
Searching in the Visibility Graph

• The visibility map can now be searched as we can search in a road map using straight line distance as the heuristic estimate

• Note:
 – State space is very limited
 – Optimal solution is not necessarily an optimal solution for the original problem
 – Shortest path is neither the most safe nor the fastest path
Summary (1)

• **Heuristics** focus the search
• **Best-first search** expands the node with the highest worth (defined by any measure) first.
• With the minimization of the evaluated costs to the goal h we obtain a **greedy search**.
• The minimization of $f(n) = g(n) + h(n)$ combines uniform and greedy searches. When $h(n)$ is **admissible**, i.e. h^* is never overestimated, we obtain the **A* search, which is complete and optimal**.
Summary (2)

- There are many variations of A*
- **Local search methods** only ever work on one state, attempting to improve it step-wise.
- **Genetic algorithms** imitate evolution by combining good solutions. General contribution not clear yet.
- There are no turnkey solutions, you always have to **try** and **tweak**