5. Constraint Satisfaction Problems

CSPs as Search Problems, Solving CSPs, Problem Structure

Wolfram Burgard & Luc De Raedt & Bernhard Nebel
Contents

• What are CSPs?
• Backtracking Search for CSPs
• CSP Heuristics
• Constraint Propagation
• Problem Structure
Constraint Satisfaction Problems

- In search problems, the state does not have a structure (everything is in the data structure).
- In CSPs, states are defined by variable assignments of a given set of values \(\{d_1, d_2, \ldots, d_k\} \) to a given set of variables \(\{x_1, x_2, \ldots, x_n\} \).
- The goal test is the test whether a set of constraints is satisfied by the variable assignment.
- *Formal representation language* with associated general inference algorithms.
Example: Map-Coloring

- **Variables:** WA, NT, SA, Q, NSW, V, T
- **Values:** \{red, green, blue\}
- **Constraints:** adjacent regions must have different colors, e.g. NSW ≠ V

What is wrong here?
Australian Capital Territory (ACT) and Canberra (inside NSW)

View of the Australian National University and Telstra Tower
• **Solution assignment:**

 - \{ WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green \}

 • Perhaps in addition ACT = blue
Constraint Graph

- Works for binary CSPs (otherwise hyper graph)
- **Nodes** = variables, **arcs** = constraints
- Graph structure can be important (e.g., connected components)

- **Note**: Our problem is 3-colorability for a planar graph
Variations

• Binary, ternary, or even higher arity
• Finite domains (d values) $\Rightarrow d^n$ possible variable assignments
• Infinite domains (reals, integers)
 – *linear constraints* solvable (in P if real)
 – *nonlinear constraints* unsolvable
Applications

• Timetabling (classes, rooms, times)
• Configuration (hardware, cars, …)
• Spreadsheets
• Scheduling
• Floor planning
• Frequency assignments
• …
Backtracking Search over Assignments

• Assign values to variables step by step (order does not matter)
• Consider only one variable per search node!
• DFS with single-variable assignments is called backtracking search
• Can solve n-queens for $n \approx 25$
Algorithm

function BACKTRACKING-Search(csp) returns solution/failure
 return RECURSIVE-BACKTRACKING([], csp)

function RECURSIVE-BACKTRACKING(assigned, csp) returns solution/failure
 if assigned is complete then return assigned
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assigned, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assigned, csp) do
 if value is consistent with assigned according to CONSTRAINTS[csp] then
 result ← RECURSIVE-BACKTRACKING([var = value | assigned], csp)
 if result ≠ failure then return result
 end
 end
 return failure
Example (1)
Example (2)
Example (3)
Example (4)
Improving Efficiency: CSP Heuristics & Pruning Techniques

- **Variable ordering**: Which one to assign first?
- **Value ordering**: Which value to try first?
- Try to detect failures early on
- Try to exploit problem structure

➤ **Note**: all this is not problem-specific!
Variable Ordering: Most constrained first

• Most constrained variable:
 – choose the variable with the fewest legal values
 ➢ reduces branching factor!
Variable Ordering: Most Constraining Variable First

• Break ties among variables with the same number of possible values:
 – choose variable with the most constraints on remaining unassigned variables
 ➢ reduces branching factor in the next steps
Value Ordering:
Least Constraining Value First

• Given a variable,
 – choose first a value that rules out the fewest values in the remaining unassigned variables
 ➢ We want to find an assignment that satisfies the constraints (of course, does not help if unsat.)
Rule Out Failures Early On: Forward Checking

• Whenever a value is assigned to a variable, values that are now illegal for other variables are removed
• $WA = \text{red}$, then NT cannot become red
• If all values are removed for one variable, we can stop
Forward Checking (1)

- Keep track of remaining values
- Stop if all have been removed
Forward Checking (2)

- Keep track of remaining values
- Stop if all have been removed
Forward Checking (3)

- Keep track of remaining values
- Stop if all have been removed
Forward Checking (4)

- Keep track of remaining values
- Stop if all have been removed
Forward Checking: Sometimes it Misses Something

- Forward Checking propagates information from assigned to unassigned variables
- However, there is no propagation between unassigned variables
Arc Consistency

- A directed arc $X \rightarrow Y$ is “consistent” iff
 - for every value x of X, there exists a value y of Y, such that (x,y) satisfies the constraint between X and Y
 - remove values from the domain of X to enforce arc-consistency
- **Arc consistency** detects failures earlier
- Can be used as **preprocessing** technique or as a **propagation** step during backtracking
Arc Consistency Example
AC3 Algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \(\{X_1, X_2, \ldots, X_n\} \)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 \((X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)\)
 if \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) then
 for each \(X_k\) in \text{NEIGHBORS}[X_i] do
 add \((X_k, X_i)\) to queue

function \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) returns true iff we remove a value
removed \leftarrow false
for each \(x\) in \text{DOMAIN}[X_i] do
 if no value \(y\) in \text{DOMAIN}[X_j] allows \((x,y)\) to satisfy the constraint between \(X_i\) and \(X_j\)
 then delete \(x\) from \text{DOMAIN}[X_i]; removed \leftarrow true
return removed
Properties of AC3

• AC3 runs in $O(d^3n^2)$ time, with n being the number of nodes and d being the maximal number of elements in a domain

• Of course, AC3 does not detect all inconsistencies (which is an NP-hard problem)
Problem Structure (1)

- CSP has two independent components
- Identifiable as connected components of constraint graph
- Can reduce the search space dramatically
Problem Structure (2): Tree-structured CSPs

- If the CSP graph is a tree, then it can be solved in $O(nd^2)$
 - General CSPs need in the worst case $O(d^n)$
- **Idea:** Pick root, order nodes, apply arc consistency from leaves to root, and assign values starting at root
Problem Structure (2): Tree-structured CSPs

- Apply arc-consistency to \((X_i, X_k)\), when \(X_i\) is the parent of \(X_k\), for all \(k=n\) down to 2.
- Now one can start at \(X_1\) assigning values from the remaining domains without creating any conflict in one sweep through the tree!
- Algorithm linear in \(n\)
Problem Structure (3): Almost Tree-structured

- **Conditioning**: Instantiate a variable and prune values in neighboring variables

- **Cutset conditioning**: Instantiate (in all ways) a set of variables in order to reduce the graph to a tree (note: finding minimal cutset is NP-hard)
Another Method: Tree Decomposition (1)

- Decompose problem into a set of connected sub-problems, where two sub-problems are connected when they share a constraint
- Solve sub-problems independently and combine solutions
Tree Decomposition (2)

- A tree decomposition must satisfy the following conditions:
 - Every variable of the original problem appears in at least one sub-problem
 - Every constraint appears in at least one sub-problem
 - If a variable appears in two sub-problems, it must appear in all sub-problems on the path between the two sub-problems
 - The connections form a tree
Tree Decomposition (3)

- Consider sub-problems as new *mega-nodes*, which has values defined by the solutions to the sub-problems
- Use technique for tree-structured CSP to find an overall solution (constraint is to have identical values for the same variable).
Tree Width

- **Tree width of a tree** decomposition = size of largest sub-problem minus 1
- **Tree width of a graph** is minimal tree width over all possible tree decompositions
- If a graph has tree width w and we know a tree decomposition with that width, we can solve the problem in $O(nd^{w+1})$
- **Finding a tree decomposition** with minimal tree width is **NP-hard**
Summary & Outlook

• **CSPs** are a special kind of search problem:
 – states are value assignments
 – goal test is defined by constraints

• **Backtracking** = DFS with one variable assigned per node. Other *intelligent backtracking* techniques possible

• **Variable/value ordering** heuristics can help dramatically

• **Constraint propagation** prunes the search space

• **Path-consistency** is a constraint propagation technique for triples of variables

• **Tree structure** of CSP graph simplifies problem significantly

• **Cutset conditioning** and **tree decomposition** are two ways to transform part of the problem into a tree

• CSPs can also be solved using **local search**