Foundations of AI

8. Satisfiability and Model Construction

Davis-Putnam, Phase Transitions, GSAT

Wolfram Burgard & Luc De Raedt & Bernhard Nebel
Contents

• Motivation
• Davis-Putnam Procedure
• “Average” complexity of the satisfiability problem
• GSAT: Greedy SAT Procedure
Motivation (1)

- **Brute-force** search procedures lead to intelligent behavior…?

 … but these search techniques must be **efficient**;

 … and knowledge is also required (opening- and closing-sequence libraries, good evaluations functions);

 … so far, imitating human behavior in chess has not led to any impressive performance.

→ Today’s theme: **efficient search techniques** for **model construction**.
Motivation (2)

• Usually:
 – **Given**: A logical theory (set of propositions)
 – **Question**: Does a proposition **logically follow** from this theory?
 – Reduction to **unsatisfiability**, which is **coNP-complete** (complementary to NP problems)

• Sometimes:
 – **Given**: A logical theory
 – **Wanted**: **Model of the theory**.
 – **Example**: Configurations that fulfill the constraints given in the theory.
 – Can be “easier” because it is enough to find one model
The Davis-Putnam Procedure

DP Function

Given a set of clauses Δ defined over a set of variables Σ, return “satisfiable” if Δ is satisfiable. Otherwise return “unsatisfiable”.

1. If $\Delta = \emptyset$ return “satisfiable”

2. If $\square \in \Delta$ return “unsatisfiable”

3. **Unit-propagation Rule**: If Δ contains a unit-clause C, assign a truth-value to the variable in C that satisfies C, simplify Δ to Δ' and return $\text{DP}(\Delta')$.

4. **Splitting Rule**: Select from Σ a variable v which has not been assigned a truth-value. Assign one truth value t to it, simplify Δ to Δ' and call $\text{DP}(\Delta')$

 a. If the call returns “satisfiable”, then return “satisfiable”

 b. Otherwise assign *the other* truth-value to v in Δ, simplify to Δ'' and return $\text{DP}(\Delta'')$.

Example (1)

\[\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\} \]
Example (2)

\[\Delta = \{ \{ a, \neg b, \neg c, \neg d \}, \{ b, \neg d \}, \{ c, \neg d \}, \{ d \} \} \]
Properties of DP

- DP is complete, correct, and guaranteed to terminate.
- DP constructs a model, if one exists.
- In general, DP requires exponential time (splitting rule!)
- DP is polynomial on horn clauses, i.e., clauses with at most one positive literal.

\[\neg A_1, \lor \ldots \lor \neg A_n \lor B \equiv \land_i A_i \rightarrow B \]

→ Heuristics are needed to determine which variable should be instantiated next and which value should be used

→ In all SAT competitions so far, DP-based procedures have shown the best performance.
DP on Horn Clauses (1)

Note:

1. The simplifications in DP on Horn clauses always generate Horn clauses

2. A set of Horn clauses without unit clauses is satisfiable
 - All clauses have at least one negative literal
 - Assign false to all variables

3. If the first sequence of applications of the unit propagation rule in DP does not lead to the empty clause, a set of Horn clauses without unit clauses is generated (which is satisfiable according to (2))
DP on Horn Clauses (2)

4. Although a set of Horn clauses without a unit clause is satisfiable, DP may not immediately recognize it.
 a. If DP assigns false to a variable, this cannot lead to an unsatisfiable set and after a sequence of unit propagations we are in the same situation as in 4
 b. If DP assigns true, then we may get an empty clause - perhaps after unit propagation (and have to backtrack) - or the set is still satisfiable and we are in the same situation as in 4
DP on Horn Clauses (3)

In summary:

1. DP executes a sequence of unit propagation steps resulting in
 - an empty clause or
 - a set of Horn clauses without a unit clause, which is satisfiable

2. In the latter case, DP proceeds by choosing for one variable:
 - *false*, which does not change the satisfiability
 - *true*, which either
 - leads to an immediate contradiction (after unit propagation) and backtracking or
 - does not change satisfiability

Run time is *polynomial* in the number of variables
How Good is DP in the Average Case?

- We know that SAT is NP-complete, i.e., in the worst case, it takes exponential time.
- This is clearly also true for the DP-procedure.
 → Couldn’t we do better in the average case?
- For CNF-formulae in which the probability for a positive appearance, negative appearance and non-appearance in a clause is 1/3, DP needs on average quadratic time (Goldberg 79)!
 → The probability that these formulae are satisfiable is, however, very high.
Phase Transitions …

Conversely, we can, of course, try to identify hard to solve problem instances

Cheeseman et al. (IJCAI-91) came up with the following plausible conjecture:

All NP-complete problems have at least one order parameter and the hard to solve problems are around a critical value of this order parameter. This critical value (a phase transition) separates one region from another, such as over-constrained and under-constrained regions of the problem space.

Confirmation for graph coloring and Hamilton path … later also for other NP-complete problems.
Phase Transitions with 3-SAT

Constant clause length model (Mitchell et al., AAAI-92): Clause length k is given. Choose variables for every clause k and use the complement with probability 0.5 for each variable.

Phase transition for 3-SAT with a clause/variable ratio of approx. 4.3:
Empirical Difficulty

The Davis-Putnam (DP) Procedure shows extreme runtime peaks at the phase transition:

Note: Hard instances can exist even in the regions of the more easily satisfiable/unsatisfiable instances!
Notes on the Phase Transition

- When the probability of a solution is close to 1 (under-constrained), there are many solutions, and the first search path of a backtracking search is usually successful.

- If the probability of a solution is close to 0 (over-constrained), this fact can usually be determined early in the search.

- In the phase transition stage, there are many near successes (“close, but no cigar”).
 → (limited) possibility of predicting the difficulty of finding a solution based on the parameters.
 → (search intensive) benchmark problems are located in the phase region (but they have a special structure)
Local Search Methods for Solving Logical Problems

In many cases, we are interested in finding a satisfying assignment of variables (example CSP), and we can sacrifice completeness if we can “solve” much large instances this way.

Standard process for optimization problems: Local Search

- Based on a (random) configuration
- Through local modifications, we hope to produce better configurations

→ Main problem: local maxima
Dealing with Local Maxima

As a measure of the value of a configuration in a logical problem, we could use the number of satisfied constraints/clauses.

But local search seems inappropriate, considering we want to find a global maximum (all constraints/clauses satisfied).

By restarting and/or injecting noise, we can often escape local maxima.

Actually: Local search performs very well for finding satisfying assignments of CNF formulae (even without injecting noise).
GSAT

Procedure GSAT

INPUT: a set of clauses \(\alpha \), MAX-FLIPS, and MAX-TRIES

OUTPUT: a satisfying truth assignment of \(\alpha \), if found

begin
 for \(i:=1 \) to MAX-TRIES
 \(T := \) a randomly-generated truth assignment
 for \(j:=1 \) to MAX-FLIPS
 if \(T \) satisfies \(\alpha \) then return \(T \)
 \(v := \) a propositional variable such that a change in its truth assignment
 gives the largest increase in the number of clauses of \(\alpha \) that
 are satisfied by \(T \).
 \(T := T \) with the truth assignment of \(v \) reversed
 end for
 end for
return “no satisfying assignment found”
end
The Search Behavior of GSAT

- In contrast to normal local search methods, we must also allow sideways movements!
- Most time is spent searching on **plateaus**.
State of the Art

- SAT competitions since beginning of the ´90
- Current SAT competitions (http://www.satlive.org/):
 - In 2003:
 - Largest solved instances:
 - 100,000 variables / 1,000,000 clauses
 - Smallest unsolved instances:
 - 200 variables / 1,000 clauses
- Complete solvers are as good as randomized ones!
Concluding Remarks

• DP-based SAT solver prevail:
 – Very efficient implementation techniques
 – Good branching heuristics
 – Clause learning

• Incomplete randomized SAT-solvers
 – are good (in particular on random instances)
 – but there is no dramatic increase in size of what they can solve
 – parameters are difficult to adjust