Foundations of AI

Recent Approaches to Planning

Bernhard Nebel, Wolfram Burgard and Luc De Raedt
Contents

• Recent Approaches
• Optimal Planning: Planning Graphs
• Fast Planning: Heuristic Search
• Search Space Topology
New Approaches

• Since 1995, a number of new algorithmic approaches have been developed, which are much faster than the POP algorithm:
 – Planning based on planning graphs
 – Satisfiability based planning
 – BDD-based approaches (good for multi-state problems – which we ignore here)
 – Heuristic-search based planning
Planning Graphs

- **Parallel** execution of actions possible
- Assumption: Only positive preconditions
- Describe possible developments in a layered graph (fact level/action level)
 - links from (positive) facts to **preconditions**
 - **positive effects** generate (positive) facts
 - **negative effects** are used to mark **conflicts**
- **Extract plan** by choosing only non-conflicting parts of graph
Generate a Planning Graph

- Add all applicable actions
- In order to propagate unchanged property p, use special action $noop_p$
- Generate all positive effects on next fact level
- Mark conflicts (between actions that cannot be executed in parallel)
- Expand planning graph as long as not all atoms in fact level
Extract a Plan

- Start at **last fact level** with goal facts
- **Select minimal set of non-conflicting** actions generating the goals
- Use preconditions of these actions as **goals** on next lower level
- **Backtrack** if no non-conflicting choice is possible
Conflict Information

• Two actions interfere (cannot be executed in parallel):
 – one action deletes or asserts the precondition of the other action
 – they have opposite effects on one atomic fact

• They are marked as such
 – and this information is propagated to prune the search early on
Mutex Pairs

• No pair of facts is \textit{mutex} at fact level 0
• A pair of facts is \textit{mutex} at fact level \(i > 0\) if all ways of making them true involve actions that are \textit{mutex} at the action level \(i-1\)
• A pair of actions is \textit{mutex} at action level \(i\) if
 – they interfere or
 – one precondition of one action is \textit{mutex} to a precondition of the other action at fact level \(i-1\)

\textbf{Mutex} pairs cannot be true/executed at the same time

\textbf{Note that we do not found all pairs that cannot be true/executed at the same time, but only the easy to spot pairs}
Example Mutex Propagation

- Mark all interfering actions
- Then start at action level 1 and propagate conflicts
- Expand planning graph as long the goal nodes are not all generated or some are still mutex
Planning Graphs: General Method

- **Expand planning graph** until all goal atoms are in fact level and they are not mutex
- If not possible, *terminate with failure*
- Iterate:
 - Try to extract plan and *terminate with plan* if successful
 - Expand by another action and fact level
- **Termination** for unsolvable planning problems can be guaranteed – but is complex
Properties of the **Planning Graph** Approach

• Finds an **optimal solution** (for parallel plans)
• Terminates on **unsolvable** planning instances
• Is **much** faster than POP planning
• Has problems with **symmetries**:
 – Example: Transport n objects from room A to room B using one gripper
 – If shortest plan has k steps, it proves that there is no $k-1$ step plans
Planning as Satisfiability

• Based on planning graphs of depth k, one can generate a set of propositional CNF formulae
 – such that each model of these formulae correspond to a k-step plan
 – basically, one performs a different kind of search in the planning graph (middle out instead of regression search)
 – Can be considerably faster, sometimes …
Heuristic Search Planning

- **Forward state-space** search is often considered as **too inefficient** because of the high branching factor.
- Why not use a **heuristic estimator** to guide the search?
- Could that be **automatically derived** from the representation of the planning instance?

> Yes, since the actions are not “black boxes” as in search!
Ignoring Negative Effects

• Ignore all negative effects (assuming again we have only positive preconditions)
 – monotone planning

• Example for the buyer’s domain:
 – Only Go and Drop have negative effects (perhaps also Buy)
 – Minimal length plan: <Go(HWS), Buy(Drill), Go(SM), Buy(Bananas), Buy(Milk), Go(Home)>
 – Ignoring negative effects: <Go(HWS), Buy(Drill), Go(SM), Buy(Bananas), Buy(Milk)>

• Usually plans with simplified ops. are shorter
Monotone Planning

• Monotone planning is easy, i.e., can be solved in \textit{polynomial time}:
 – While we have not made all goal atoms true:
 • Pick any action that
 – is applicable and
 – has not been applied yet
 • and apply it
 • If there is no such action, return failure
 • otherwise continue
Monotone Optimal Planning

• Finding the *shortest plan* is what we need to get an admissible heuristic, though!

• This is NP-hard, even if there are no preconditions!

 ➢ *Minimum Set Cover*, which is NP-complete, can be reduced to this problem
Minimum Set Cover

• **Given:** A set S, a collection of subsets $C = \{C_1, \ldots, C_n\}$, $C_i \subseteq S$, and a natural number k.

• **Question:** Does there exist a subset of C of size k covering S?

- Problem is **NP-complete**
- and obviously a special case of the monotone planning optimization problem
Simplifying it Further …

- Since the monotone planning heuristic is computationally too expensive, simplify it further:
 - compute heuristic distance for each atom (recursively) by assuming independence of sub-goals
 - solve the problem with any planner (i.e. the planning graph approach) and use this as an approximative solution
 - both approaches may over-estimate, i.e., it is not an admissible heuristic any longer
The Fast-Forward (FF) System

- **Heuristic:** Solve the monotone planning problem resulting from the relaxation using a planning graph approach
- **Search:** Hill-climbing extended by breadth-first search on plateaus and with
- **Pruning:** Only those successors are considered that are part of a relaxed solution
- **Fall-back strategy:** complete best-first search
Relative Performance of FF

- FF performs very well on the planning benchmarks that are used for the planning competitions
- Examples:
 - Blocks world
 - Logistics
 - Freecell

- Performance data is from the International AI Planning System Competition 2000
Blocksworld (Performance)
Logistics (Domain)
Logistics (Performance)

![Graphs showing CPU time and solution size for different problem sizes and algorithms]

- **CPU time**
- **Solution size**
Freecell (Domain)
Freecell (Performance)

CPU time

Solution size
Search Space Topology

• Why works the FF heuristic so well?
• Look for search space properties such as
 – local minima
 – size of plateaus
 – dead ends (detected & undetected)
• Estimate by
 – exploring small instances
 – sampling large instance
• Try to prove conjectures found this way
 ➢ Goes some way in understanding problem structure
Summary & Outlook

- Recent approaches to planning have boosted the efficiency of planning methods significantly.
- Heuristic search planning appears to be one of the fastest (non-optimal) methods.
- We are starting to understand the difficulty of a planning domain in terms of its search space topology.
- Currently, search technology is transferred into the area of formal verification and synthesis (and vice versa).
- While it may still be long time before we can afford to use these techniques instead of domain-specific methods, the progress looks promising.