Introduction to Mobile Robotics

Wheeled Locomotion

Locomotion of Wheeled Robots

Locomotion (Oxford Dict.): Power of motion from place to place

- Differential drive (AmigoBot, Pioneer 2-DX)
- Car drive (Ackerman steering)
- Synchronous drive (B21)
- Mecanum wheels, XR4000

Instantaneous Center of Curvature

- For rolling motion to occur, each wheel has to move along its y-axis

Differential Drive

\[\text{ICC} = [x - R \sin \theta, y + R \cos \theta] \]

\[\omega(R + l/2) = v_r \]
\[\omega(R - l/2) = v_l \]
\[R = \frac{l (v_l + v_r)}{2 (v_r - v_l)} \]
\[\omega = \frac{v_r - v_l}{l} \]
Differential Drive: Forward Kinematics

\[
\begin{bmatrix}
 x' \\
 y' \\
 \theta'
\end{bmatrix} =
\begin{bmatrix}
 \cos(\omega \delta t) & -\sin(\omega \delta t) & 0 \\
 \sin(\omega \delta t) & \cos(\omega \delta t) & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x - ICC_x \\
 y - ICC_y \\
 \theta
\end{bmatrix}
+
\begin{bmatrix}
 ICC_x \\
 ICC_y \\
 \omega \delta t
\end{bmatrix}
\]

\[
x(t) = \int_0^t v(t') \cos[\theta(t')] dt'
\]

\[
y(t) = \int_0^t v(t') \sin[\theta(t')] dt'
\]

\[
\theta(t) = \int_0^t \omega(t') dt'
\]

Ackermann Drive

\[
ICC = [x - R \sin \theta, y + R \cos \theta]
\]

\[
R = \frac{d}{\tan \varphi}
\]

\[
\omega(R + l/2) = v_r
\]

\[
\omega(R - l/2) = v_l
\]

\[
R = \frac{l (v_l + v_r)}{2 (v_r - v_l)}
\]

\[
\omega = \frac{v_r - v_l}{l}
\]

Synchuous Drive

\[
x(t) = \int_0^t v(t') \cos[\theta(t')] dt'
\]

\[
y(t) = \int_0^t v(t') \sin[\theta(t')] dt'
\]

\[
\theta(t) = \int_0^t \omega(t') dt'
\]
XR4000 Drive

\[
x(t) = \int_0^t v(t') \cos[\theta(t')] dt'
\]
\[
y(t) = \int_0^t v(t') \sin[\theta(t')] dt'
\]
\[
\theta(t) = \int_0^t \omega(t') dt'
\]

Mecanum Wheels

\[
v_y = \frac{(v_0 + v_1 + v_2 + v_3)}{4}
\]
\[
v_x = \frac{(v_0 - v_1 + v_2 - v_3)}{4}
\]
\[
v_\theta = \frac{(v_0 + v_1 - v_2 - v_3)}{4}
\]
\[
v_{\text{error}} = \frac{(v_0 - v_1 - v_2 + v_3)}{4}
\]

Example: Priamos

[Priamos, Karlsruhe]
Example

Tracked Vehicle: Urban Robot

Tracked Vehicle: OmniTread

Odometry
Non-Holonomic Constraints

- Non-holonomic constraints limit the possible incremental movements within the configuration space of the robot.
- Robots with differential drive or synchro-drive move on a circular trajectory and cannot move sideways.
- XR-4000 or Mecanum-wheeled robots can move sideways.

Holonomic vs. Non-Holonomic

- Non-holonomic constraints reduce the control space with respect to the current configuration (e.g., moving sideways is impossible).
- Holonomic constraints reduce the configuration space.

Non-Holonomic Drives

- Synchro-drive
- Differential drive
- Ackerman drive