Introduction to Mobile Robotics

Robot control paradigms

Classical / Hierarchical Paradigm

- 70’s
- Focus on automated reasoning and knowledge representation
- STRIPS (Stanford Research Institute Problem Solver): Perfect world model, closed world assumption
- Find boxes and move them to designated position

Shakey ‘69

Stanford Research Institute

Stanford CART ‘73

Stanford AI Laboratory / CMU (Moravec)
Classical Paradigm
Stanford Cart

1. Take nine images of the environment, identify interesting points in one image, and use other images to obtain depth estimates.
2. Integrate information into global world model.
3. Correlate images with previous image set to estimate robot motion.
4. On basis of desired motion, estimated motion, and current estimate of environment, determine direction in which to move.
5. Execute the motion.

Classical Paradigm as Horizontal/Functional Decomposition

Classical Paradigm as Horizontal/Functional Decomposition

Reactive / Behavior-based Paradigm

- Radical change in system design: no planning, no models
- The world is its own, best model
- Investigate biological systems (e.g. human catching a ball)
- Easy successes, but also limitations
Characteristics of Reactive Paradigm

- Situated agent, robot is integral part of the world.
- No memory, controlled by what is happening in the world.
- Tight coupling between perception and action via behaviors.
- Only local, behavior-specific sensing is permitted (ego-centric representation).

Subsumption Architecture

- Introduced by Rodney Brooks ‘86.
- Behaviors are networks of sensing and acting modules (augmented finite state machines AFSM).
- Modules are grouped into layers of competence.
- Layers can subsume lower layers.
- No internal state!

Reactive Paradigm as Vertical Decomposition

- Behavior are a direct mapping of sensory inputs to a pattern of motor actions that are then used to achieve a task.
- Serve as the basic building block for robotics actions, and the overall behavior of the robot is emergent.
- Support good software design principles due to modularity.
Level 0: Avoid

- Sonar
 - Feel force
 - Run away
 - Turn
 - Collide
 - Forward
 - Polar plot of sonars

Level 1: Wander

- Encoders
 - Wander
 - Avoid
 - Feel force
 - Run away
 - Turn
 - Collide
 - Forward

Level 2: Follow Corridor

- Look
 - Stay in middle
 - Integrate
 - Wander
 - Avoid
 - Feel force
 - Run away
 - Turn
 - Collide
 - Forward
 - Polar plot

Potential Field Methodologies

- Treat robot as **particle** acting under the influence of a potential field
- Robot travels along the **derivative of the potential**
- Field depends on obstacles, desired travel directions and targets
- Resulting field (vector) is given by the summation of primitive fields
- Strength of field may change with distance to obstacle/target
Primitive Potential Fields

- **Uniform**
- **Perpendicular**
- **Attractive**
- **Repulsive**
- **Tangential**

Corridor following with Potential Fields

- **Level 0** (collision avoidance) is done by the repulsive fields of detected obstacles.
- **Level 1** (wander) adds a uniform field.
- **Level 2** (corridor following) replaces the wander field by three fields (two perpendicular, one uniform).

Characteristics of Potential Fields

- Suffer from **local minima**
 - Backtracking
 - Random motion to escape local minimum
 - Procedural planner
 - Increase potential of visited regions
 - Avoid local minima by harmonic functions

- **Goal**
Reactive Paradigm

- Representations?
- Good software engineering principles?
- Easy to program?
- Robustness?
- Scalability?

Hybrid Deliberative/reactive Paradigm

- Combines advantages of previous paradigms
 - World model used for planning
 - Closed loop, reactive control

Discussion

- Imagine you want your robot to perform navigation tasks, which approach would you choose?
- What are the benefits of the behavior based paradigm?
- Which approaches will win in the long run?