Foundations of AI
9. Knowledge Representation: Modeling with Logic

Concepts, Actions, Time, & all the rest

Wolfram Burgard and Luc De Raedt
Contents

- Knowledge Representation and Reasoning
- Concepts & Description logics
- Logical agents for the WUMPUS World
- Situation calculus
- The frame problem
- Time intervals and their description
Knowledge Representation and Reasoning

- Often, our agents need **knowledge** before they can start to act intelligently.
- They then also need some **reasoning component** to exploit the knowledge they have.
- Examples:
 - Knowledge about the important **concepts** in a domain.
 - Knowledge about **actions** one can perform in a domain.
 - Knowledge about **temporal relationships** between events.
 - Knowledge about the world and how properties are related to actions.
Categories and Objects

- We need to describe the objects in our world using categories.
- Necessary to establish a common category system for different applications (in particular on the web).
- There are a number of quite general categories everybody and every application uses.
The Upper Ontology: A General Category Hierarchy
Description Logics

- How to describe more specialized things?
- Use definitions and/or necessary conditions referring to other already defined *concepts*:
 - a parent is a human with at least one child
- More complex description:
 - a proud-grandmother is a human, which is female with at least two children that are in turn parents whose children are all doctors
Reasoning Services in Description Logics

- **Subsumption**: Determine whether one description is more general than (subsumes) the other
- **Classification**: Create a subsumption hierarchy
- **Satisfiability**: Is a description satisfiable?
- **Instance relationship**: Is a given object instance of a concept description?
- **Instance retrieval**: Retrieve all objects for a given concept description
Special Properties of Description Logics

- Semantics of description logics can be given using ordinary PL1
 - Alternatively, DLs can be considered as modal logics
- Reasoning for most DLs is much more efficient than for PL1
- Nowadays, W3C standards such as OWL (formerly DAML+OIL) are based on description logics
Logic-Based Agents That Act

```plaintext
function KB-AGENT(percept) returns an action
    static: KB, a knowledge base
    t, a counter, initially 0, indicating time

    TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
    action ← ASK(KB, MAKE-ACTION-QUERY(t))
    TELL(KB, MAKE-ACTION-SENTENCE(action, t))
    t ← t + 1
    return action
```

Query (Make-Action-Query): $\exists x \text{Action}(x, t)$

A variable assignment for x in the WUMPUS world example should give the following answers:

$\text{turn(right)}, \text{turn(left)}, \text{forward}, \text{shoot}, \text{grab}, \text{release}, \text{climb}$
Reflex Agents

... only react to percepts.

Example of a percept statement (at time 5):

\[\text{Percept}(\text{stench, breeze, glitter, none, none, 5})\]

1. \(\forall b, g, u, c, t[\text{Percept}(\text{stench, b, g, u, c, t}) \Rightarrow \text{Stench}(t)]\)
2. \(\forall s, g, u, c, t[\text{Percept}(s, \text{breeze, g, u, c, t}) \Rightarrow \text{Breeze}(t)]\)
3. \(\forall s, b, g, u, c, t[\text{Percept}(s, b, \text{glitter, u, c, t}) \Rightarrow \text{AtGold}(t)]\)

2. Step: Choice of action

\(\forall t[\text{AtGold}(t) \Rightarrow \text{Action(grab, t)}]\)

Note: Our reflex agent does not know when it should climb out of the cave and cannot avoid an infinite loop.
Model-Based Agents

... have an internal model
- of all basic aspects of their environment,
- of the executability and effects of their actions,
- of further basic laws of the world, and
- of their own goals.

Important aspect: How does the world change?

→ Situation calculus: (McCarthy, 63).
Situation Calculus

- A way to describe **dynamic worlds** with PL1.
- **States** are represented by terms.
- The world is in state s and can only be altered through the execution of an **action**: $do(a, s)$ is the resulting situation, if a is executed.
- Actions have **preconditions** and are described by their **effects**.
- Relations whose truth value changes over time are called **fluents**. Represented through a predicate with two arguments: the fluent and a state term. For example, $At(x, s)$ means, that in situation s, the agent is at position x. $Holding(y, s)$ means that in situation s, the agent holds object y.
- **Atemporal** or **eternal** predicates, e.g., $Portable(gold)$.
Example: WUMPUS-World

Let s_0 be the initial situation and

$$s_1 = \text{do}(\text{forward}, s_0)$$

$$s_2 = \text{do}(\text{turn(right)}, s_1)$$

$$s_3 = \text{do}(\text{forward}, s_2)$$
Description of Actions

Preconditions: In order to pick something up, it must be both present and portable:

\[\forall x, s [Poss(grab(x), s) \iff Present(x, s) \land Portable(x)] \]

In the WUMPUS-World:

\[Portable(gold), \forall s [AtGold(s) \Rightarrow Present(gold, s)] \]

Positive effect axiom:

\[\forall x, s [Poss(grab(x), s) \Rightarrow Holding(x, do(grab(x), s))] \]

Negative effect axiom:

\[\forall x, s \neg Holding(x, do(release(x), s)) \]
The Frame Problem

We had: \(Holding(gold, s_0) \).

Following situation: \(\neg Holding(gold, do(release(gold), s_0)) \) ?

We had: \(\neg Holding(gold, s_0) \).

Following situation: \(\neg Holding(gold, do(turn(right), s_0)) \) ?

- We must also specify which *fluents* remain unchanged!

- The frame problem: Specification of the properties that *do not* change as a result of an action.

→ Frame axioms must also be specified.
Number of Frame Axioms

\[\forall a, x, s[Holding(x, s) \land (a \neq release(x)) \Rightarrow Holding(x, do(a, s))] \]

\[\forall a, x, s[\neg Holding(x, s) \land \{(a \neq grab(x)) \lor \neg Poss(grab(x), s)\} \Rightarrow \neg Holding(x, do(a, s))] \]

Can be very expensive in some situations, since \(O(|F| \times |A|) \) axioms must be specified, \(F \) being the set of fluents and \(A \) being the set of actions.
Successor-State Axioms

A more elegant way to solve the frame problem is to fully describe the successor situation:

\[true \text{ after action} \Leftrightarrow \left[\text{action made it true} \lor \text{already true and the action did not falsify it} \right] \]

Example for \textit{grab}:

\[
\forall a, x, s[\text{Holding}(x, \text{do}(a, s)) \\
\Leftrightarrow \{(a = \text{grab}(x) \land \text{Poss}(a, s)) \lor (\text{Holding}(x, s) \land a \neq \text{release}(x))\}]\]

Can also be automatically compiled by only giving the effect axioms (and then applying \textit{explanation closure}). Here we suppose that only certain effects can appear.
Limits of this Version of Situation Calculus

- No explicit time. We cannot discuss how long an action will require, if it is executed.
- Only one agent. In principle, however, several agents can be modeled.
- No parallel execution of actions.
- Discrete situations. No continuous actions, such as moving an object from A to B.
- Closed world. Only the agent changes the situation.
- Determinism. Actions are always executed with absolute certainty.
 → Nonetheless, sufficient for many situations.
Qualitative Descriptions of Temporal Relationships

We can describe the temporal occurrence of event/actions:

- **absolute** by using a date/time system
- **relative** with respect to other event occurrences
- **quantitatively**, using time measurements (5 secs)
- **qualitatively**, using comparisons (before/overlaps)
Allen’s Interval Calculus

- Allen proposed a calculus about relative order of *time intervals*
- Allows us to describe, e.g.,
 - Interval I *occurs before* interval J
 - Interval J *occurs before* interval K
- and to conclude
 - Interval I *occurs before* interval K

→ 13 jointly exhaustive and pair-wise disjoint relations between intervals
Allen’s 13 Interval Relations

$I < J, J > I$
before/after

$ImJ, Jm^{-1}I$
meets

$IoJ, Jo^{-1}I$
overlaps

$IsJ, Js^{-1}I$
starts

$IdJ, Jd^{-1}I$
during

I, J
$
eq$

$I = J$

09/21
Examples

- Using Allen’s relation system one can describe temporal configurations as follows:
 \[X < Y, Y \circ Z, Z > X \]

- One can also use disjunctions (unions) of temporal relations:
 \[X(\prec, m)Y, Y(\circ, s)Z, Z > X \]
Reasoning in Allen’s Relations System

How do we reason in Allen’s system

- Checking whether a set of formulae is satisfiable
- Checking whether a temporal formula follows logically

➤ Use a constraint propagation technique for CSPs with infinite domains (3-consistency), based on composing relations
Constraint Propagation

\[
\begin{align*}
X \quad (<, m) \quad Y \\
\quad (>, =) \quad \quad \downarrow \\
\quad \quad \quad Z \\
\quad (s, o) \\
\end{align*}
\]

\[
\begin{align*}
X < Y s Z &= X \quad Z \\
X < Y o Z &= X \quad Z \\
X m Y s Z &= X \quad Z \\
X m Y o Z &= X \quad Z
\end{align*}
\]

Do that for every triple until nothing changes anymore, then CSP is 3-consistent
Concluding Remarks: Use of Logical Formalisms

- In many (but not all) cases, full inference in PL1 is simply too slow (and therefore too unreliable).
- Often, special (logic-based) representational formalisms are designed for specific applications, for which specific inference procedures can be used. Examples:
 - Description logics for representing conceptual knowledge.
 - James Allen’s time interval calculus for representing qualitative temporal knowledge.
 - Planning: Instead of situation calculus, this is a specialized calculus (STRIPS) that allows us to address the frame problem.

→ Generality vs. efficiency
→ In every case, logical semantics is important!