Introduction to Mobile Robotics

Bayes Filter Implementations

Gaussian filters
Bayes Filter Reminder

• Prediction

\[
\underline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \, bel(x_{t-1}) \, dx_{t-1}
\]

• Correction

\[
bel(x_t) = \eta \, p(z_t \mid x_t) \, \underline{bel}(x_t)
\]
Gaussians

Univariate

\[p(x) \sim N(\mu, \sigma^2) : \]

\[p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2} \]

Multivariate

\[p(x) \sim N(\mu, \Sigma) : \]

\[p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)} \]
Properties of Gaussians

\[
\begin{align*}
X & \sim N(\mu, \sigma^2) \\
Y = aX + b & \Rightarrow Y \sim N(a\mu + b, a^2\sigma^2)
\end{align*}
\]

\[
\begin{align*}
X_1 & \sim N(\mu_1, \sigma_1^2) \\
X_2 & \sim N(\mu_2, \sigma_2^2) \\
\Rightarrow p(X_1) \cdot p(X_2) & \sim N\left(\frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} \mu_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \mu_2, \frac{1}{\sigma_1^{-2} + \sigma_2^{-2}}\right)
\end{align*}
\]
Multivariate Gaussians

\[
\begin{align*}
X & \sim N(\mu, \Sigma) \\
Y & = AX + B
\end{align*}
\implies Y \sim N(A\mu + B, A\Sigma A^T)
\]

\[
\begin{align*}
X_1 & \sim N(\mu_1, \Sigma_1) \\
X_2 & \sim N(\mu_2, \Sigma_2)
\end{align*}
\implies p(X_1) \cdot p(X_2) \sim N\left(\frac{\Sigma_2}{\Sigma_1 + \Sigma_2} \mu_1 + \frac{\Sigma_1}{\Sigma_1 + \Sigma_2} \mu_2, \frac{1}{\Sigma_1^{-1} + \Sigma_2^{-1}}\right)
\]

• We stay in the “Gaussian world” as long as we start with Gaussians and perform only linear transformations.
Discrete Kalman Filter

Estimates the state x of a discrete-time controlled process that is governed by the linear stochastic difference equation

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

with a measurement

$$z_t = C_t x_t + \delta_t$$
Components of a Kalman Filter

\(A_t \) Matrix (nxn) that describes how the state evolves from \(t \) to \(t-1 \) without controls or noise.

\(B_t \) Matrix (nxl) that describes how the control \(u_t \) changes the state from \(t \) to \(t-1 \).

\(C_t \) Matrix (kxn) that describes how to map the state \(x_t \) to an observation \(z_t \).

\(\epsilon_t \) Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance \(R_t \) and \(Q_t \) respectively.
Kalman Filter Updates in 1D
Kalman Filter Updates in 1D

\[
\text{bel}(x_t) = \begin{cases}
\mu_t = \bar{\mu}_t + K_t(z_t - \bar{\mu}_t) \
\sigma_{t}^2 = (1 - K_t)\bar{\sigma}_{t}^2
\end{cases}
\quad \text{with} \quad K_t = \frac{\bar{\sigma}_{t}^2}{\bar{\sigma}_{t}^2 + \bar{\sigma}_{\text{obs},t}^2}
\]

\[
\text{bel}(x_t) = \begin{cases}
\mu_t = \bar{\mu}_t + K_t(z_t - C_t \bar{\mu}_t) \
\Sigma_{t} = (I - K_t C_t) \Sigma_{t}
\end{cases}
\quad \text{with} \quad K_t = \Sigma_t C_t^T (C_t \Sigma_t C_t^T + Q_t)^{-1}
\]
Kalman Filter Updates in 1D

\[
\overline{\text{bel}}(x_t) = \begin{cases}
\bar{\mu}_t = a_t \mu_{t-1} + b_t u_t \\
\bar{\sigma}^2_t = a_t^2 \sigma^2_t + \sigma^2_{\text{act},t}
\end{cases}
\]

\[
\overline{\text{bel}}(x_t) = \begin{cases}
\bar{\mu}_t = A_t \mu_{t-1} + B_t u_t \\
\Sigma_t = A_t \Sigma_{t-1} A^T_t + R_t
\end{cases}
\]
Kalman Filter Updates
Linear Gaussian Systems: Initialization

- Initial belief is normally distributed:

\[
\text{bel}(x_0) = N(x_0; \mu_0, \Sigma_0)
\]
Linear Gaussian Systems: Dynamics

- Dynamics are linear function of state and control plus additive noise:

\[x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t \]

\[p(x_t \mid u_t, x_{t-1}) = N(x_t; A_t x_{t-1} + B_t u_t, R_t) \]

\[\text{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \, dx_{t-1} \]

\[\text{bel}(x_{t-1}) \]

\[\sim N(x_t; A_t x_{t-1} + B_t u_t, R_t) \]

\[\sim N(x_{t-1}; \mu_{t-1}, \Sigma_{t-1}) \]
Linear Gaussian Systems: Dynamics

\[\overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) \, bel(x_{t-1}) \, dx_{t-1} \]

\[\Downarrow \]

\[\sim N(x_t; A_t x_{t-1} + B_t u_t, R_t) \quad \sim N(x_{t-1}; \mu_{t-1}, \Sigma_{t-1}) \]

\[\Downarrow \]

\[\overline{bel}(x_t) = \eta \int \exp \left\{ -\frac{1}{2} (x_t - A_t x_{t-1} - B_t u_t)^T R_t^{-1} (x_t - A_t x_{t-1} - B_t u_t) \right\} \]

\[\quad \exp \left\{ -\frac{1}{2} (x_{t-1} - \mu_{t-1})^T \Sigma_{t-1}^{-1} (x_{t-1} - \mu_{t-1}) \right\} \, dx_{t-1} \]

\[\overline{bel}(x_t) = \left\{ \begin{array}{l}
\overline{\mu}_t = A_t \mu_{t-1} + B_t u_t \\
\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t
\end{array} \right. \]
Linear Gaussian Systems: Observations

- Observations are linear function of state plus additive noise:

\[
z_t = C_t x_t + \delta_t
\]

\[
p(z_t \mid x_t) = N(z_t; C_t x_t, Q_t)
\]

\[
\text{bel}(x_t) = \eta \quad p(z_t \mid x_t) \quad \overline{\text{bel}}(x_t)
\]

\[
\sim N(z_t; C_t x_t, Q_t) \quad \sim N(x_t; \mu_t, \Sigma_t)
\]
Linear Gaussian Systems: Observations

\[
\begin{align*}
\text{bel}(x_t) &= \eta \ p(z_t \mid x_t) \\
&\quad \downarrow \\
&\sim \ N(z_t; C_t x_t, Q_t) \\
&\quad \downarrow \\
\bar{\text{bel}}(x_t) &= \sim \ N(x_t; \bar{\mu}_t, \bar{\Sigma}_t) \\
&\downarrow \\
\text{bel}(x_t) &= \eta \exp\left\{-\frac{1}{2} (z_t - C_t x_t)^T Q_t^{-1} (z_t - C_t x_t)\right\} \exp\left\{-\frac{1}{2} (x_t - \bar{\mu}_t)^T \bar{\Sigma}_t^{-1} (x_t - \bar{\mu}_t)\right\} \\
&\begin{cases}
\mu_t = \bar{\mu}_t + K_t (z_t - C_t \bar{\mu}_t) \\
\Sigma_t = (I - K_t C_t) \bar{\Sigma}_t
\end{cases}
\end{align*}
\]

with \(K_t = \bar{\Sigma}_t C_t^T (C_t \bar{\Sigma}_t C_t^T + Q_t)^{-1} \)
Kalman Filter Algorithm

1. Algorithm **Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2. Prediction:
3. $\bar{\mu}_t = A_t \mu_{t-1} + B_t u_t$
4. $\bar{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$

5. Correction:
6. $K_t = \bar{\Sigma}_t C_t^T (C_t \bar{\Sigma}_t C_t^T + Q_t)^{-1}$
7. $\mu_t = \bar{\mu}_t + K_t (z_t - C_t \bar{\mu}_t)$
8. $\Sigma_t = (I - K_t C_t) \bar{\Sigma}_t$

9. Return μ_t, Σ_t
The Prediction-Correction-Cycle

Prediction

\[
\begin{align*}
\overline{\mu}_t &= a_t \mu_{t-1} + b_t u_t \\
\overline{\sigma}^2 &= a_t \sigma^2 + \sigma_{act, t}^2
\end{align*}
\]

\[
\overline{\mu}_t = A_t \mu_{t-1} + B_t u_t \\
\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t
\]
The Prediction-Correction-Cycle

\[
\begin{align*}
\text{bel} (x_t) &= \left\{ \begin{array}{l}
\mu_t = \overline{\mu}_t + K_t (z_t - \overline{\mu}_t) \\
\sigma_t^2 = (1 - K_t) \overline{\sigma}_t^2 \\
K_t = \frac{\overline{\sigma}_t^2}{\overline{\sigma}_t^2 + \sigma_{\text{obs},t}^2}
\end{array} \right. \\
\text{bel} (x_t) &= \left\{ \begin{array}{l}
\mu_t = \overline{\mu}_t + K_t (z_t - C_t \overline{\mu}_t) \\
\Sigma_t = (I - K_t C_t) \Sigma_t \\
K_t = \frac{\Sigma_t C_t^T (C_t \Sigma_t C_t^T + Q_t)^{-1}}{\overline{\sigma}_t^2 + \sigma_{\text{obs},t}^2}
\end{array} \right.
\end{align*}
\]
The Prediction-Correction-Cycle

\[
\begin{align*}
\text{bel} (x_i) &= \left\{ \begin{array}{l}
\mu_i = \mu_i + K_i (z_i - \mu_i), \\
\Sigma_i = (1 - K_i) \Sigma_i
\end{array} \right. \\
K_i &= \frac{\sigma_i^2}{\sigma_i^2 + \sigma_{\text{obs},i}^2}
\end{align*}
\]

\[
\begin{align*}
\text{bel} (x_i) &= \left\{ \begin{array}{l}
\mu_i = \mu_i + K_i (z_i - C_i \mu_i), \\
\Sigma_i = (1 - K_i) \Sigma_i
\end{array} \right. \\
K_i &= \Sigma_i C_i^T (C_i \Sigma_i C_i^T + Q_i)^{-1}
\end{align*}
\]

\[
\begin{align*}
\bar{\text{bel}} (x_i) &= \left\{ \begin{array}{l}
\mu_i = a_i \mu_{i-1} + b_i u_i, \\
\Sigma_i = a_i^2 \sigma_i^2 + \sigma_{\text{act},i}^2
\end{array} \right. \\
K_i &= \Sigma_i C_i^T (C_i \Sigma_i C_i^T + Q_i)^{-1}
\end{align*}
\]

\[
\begin{align*}
\bar{\text{bel}} (x_i) &= \left\{ \begin{array}{l}
\mu_i = A_i \mu_{i-1} + B_i u_i, \\
\Sigma_i = A_i \Sigma_{i-1} A_i^T + R_i
\end{array} \right. \\
K_i &= \Sigma_i C_i^T (C_i \Sigma_i C_i^T + Q_i)^{-1}
\end{align*}
\]
Kalman Filter Summary

- **Highly efficient**: Polynomial in measurement dimensionality k and state dimensionality n:
 \[O(k^{2.376} + n^2) \]

- **Optimal for linear Gaussian systems!**

- **Most robotics systems are nonlinear!**
Nonlinear Dynamic Systems

- Most realistic robotic problems involve nonlinear functions

\[x_t = g(u_t, x_{t-1}) \]

\[z_t = h(x_t) \]
Linearity Assumption Revisited
Non-linear Function
EKF Linearization (1)
EKF Linearization (2)
EKF Linearization (3)
EKF Linearization: First Order Taylor Series Expansion

• Prediction:

\[g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1}) \]

\[g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1}) \]

• Correction:

\[h(x_t) \approx h(\bar{\mu}_t) + \frac{\partial h(\bar{\mu}_t)}{\partial x_t} (x_t - \bar{\mu}_t) \]

\[h(x_t) \approx h(\bar{\mu}_t) + H_t (x_t - \bar{\mu}_t) \]
EKF Algorithm

1. **Extended_Kalman_filter**\((\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)\):

2. Prediction:

3. \(\bar{\mu}_t = g(u_t, \mu_{t-1}) \) \hspace{2cm} \(\bar{\mu}_t = A_t \mu_{t-1} + B_t u_t \)

4. \(\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t \) \hspace{2cm} \(\bar{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t \)

5. Correction:

6. \(K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1} \) \hspace{2cm} \(K_t = \bar{\Sigma}_t C_t^T (C_t \bar{\Sigma}_t C_t^T + Q_t)^{-1} \)

7. \(\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t)) \) \hspace{2cm} \(\mu_t = \bar{\mu}_t + K_t (z_t - C_t \bar{\mu}_t) \)

8. \(\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t \) \hspace{2cm} \(\Sigma_t = (I - K_t C_t) \bar{\Sigma}_t \)

9. Return \(\mu_t, \Sigma_t \)

\[H_t = \frac{\partial h(\bar{\mu}_t)}{\partial x_t} \quad G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} \]
Localization

“Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities.” [Cox ’91]

• **Given**
 • Map of the environment.
 • Sequence of sensor measurements.

• **Wanted**
 • Estimate of the robot’s position.

• **Problem classes**
 • Position tracking
 • Global localization
 • Kidnapped robot problem (recovery)
Landmark-based Localization
1. **EKF** localization \((\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m)\):

Prediction:

\[
G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} = \begin{pmatrix}
\frac{\partial x'}{\partial \mu_{t-1,x}} & \frac{\partial x'}{\partial \mu_{t-1,y}} & \frac{\partial x'}{\partial \mu_{t-1,\theta}} \\
\frac{\partial y'}{\partial \mu_{t-1,x}} & \frac{\partial y'}{\partial \mu_{t-1,y}} & \frac{\partial y'}{\partial \mu_{t-1,\theta}} \\
\frac{\partial \theta'}{\partial \mu_{t-1,x}} & \frac{\partial \theta'}{\partial \mu_{t-1,y}} & \frac{\partial \theta'}{\partial \mu_{t-1,\theta}}
\end{pmatrix}
\]

Jacobian of \(g\) w.r.t. location

\[
v_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial u_t} = \begin{pmatrix}
\frac{\partial x'}{\partial v_t} & \frac{\partial x'}{\partial \omega_t} \\
\frac{\partial y'}{\partial v_t} & \frac{\partial y'}{\partial \omega_t} \\
\frac{\partial \theta'}{\partial v_t} & \frac{\partial \theta'}{\partial \omega_t}
\end{pmatrix}
\]

Jacobian of \(g\) w.r.t. control

\[
M_t = \begin{pmatrix}
(\alpha_1 |v_t| + \alpha_2 |\omega_t|)^2 & 0 \\
0 & (\alpha_3 |v_t| + \alpha_4 |\omega_t|)^2
\end{pmatrix}
\]

Motion noise

\[
\overline{\mu}_t = g(u_t, \mu_{t-1})
\]

Predicted mean

\[
\overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + V_t M_t V_t^T
\]

Predicted covariance
1. **EKF_localization** \((\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m)\):

 Correction:

2. \[\hat{z}_t = \left(\sqrt{(m_x - \bar{\mu}_{t,x})^2 + (m_y - \bar{\mu}_{t,y})^2} \right) \left(\arctan(2(m_y - \bar{\mu}_{t,y}, m_x - \bar{\mu}_{t,x}) - \bar{\mu}_{t,\theta}) \right) \] Predicted measurement mean

3. \[H_t = \frac{\partial h(\bar{\mu}_t, m)}{\partial x_t} = \begin{pmatrix} \frac{\partial r_t}{\partial \bar{\mu}_{t,x}} & \frac{\partial r_t}{\partial \bar{\mu}_{t,y}} & \frac{\partial r_t}{\partial \bar{\mu}_{t,\theta}} \\ \frac{\partial \phi_t}{\partial \bar{\mu}_{t,x}} & \frac{\partial \phi_t}{\partial \bar{\mu}_{t,y}} & \frac{\partial \phi_t}{\partial \bar{\mu}_{t,\theta}} \end{pmatrix} \] Jacobian of \(h \) w.r.t location

4. \[Q_t = \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_r^2 \end{pmatrix} \]

5. \[S_t = H_t \bar{\Sigma}_t H_t^T + Q_t \] Pred. measurement covariance

6. \[K_t = \bar{\Sigma}_t H_t^T S_t^{-1} \] Kalman gain

7. \[\mu_t = \bar{\mu}_t + K_t (z_t - \hat{z}_t) \] Updated mean

8. \[\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t \] Updated covariance
EKF Prediction Step
EKF Observation Prediction Step

\[\Sigma_t \]

\[\mu_t \]

\[z_t \]

\[Q_t \]

\[R_t \]

\[n_t^T \]

\[S_t \]
EKF Correction Step
Estimation Sequence (1)
Estimation Sequence (2)
Comparison to GroundTruth
EKF Summary

• Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n:
 $$O(k^{2.376} + n^2)$$

• Not optimal!
• Can diverge if nonlinearities are large!
• Works surprisingly well even when all assumptions are violated!
Linearization via Unscented Transform

EKF

UKF
UKF Sigma-Point Estimate (2)

EKF

UKF
UKF Sigma-Point Estimate (3)
Unscented Transform

Sigma points

\[\chi^0 = \mu \]
\[\chi^i = \mu \pm (\sqrt{(n+\lambda)\Sigma})_i \]

Weights

\[w_m^0 = \frac{\lambda}{n+\lambda} \quad w_c^0 = \frac{\lambda}{n+\lambda} + (1-\alpha^2 + \beta) \]
\[w_m^i = w_c^i = \frac{1}{2(n+\lambda)} \quad \text{for } i = 1,\ldots,2n \]

Pass sigma points through nonlinear function

\[\psi^i = g(\chi^i) \]

Recover mean and covariance

\[\mu' = \sum_{i=0}^{2n} w_m^i \psi^i \]
\[\Sigma' = \sum_{i=0}^{2n} w_c^i (\psi^i - \mu)(\psi^i - \mu)^T \]
UKF_localization \(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m \):

Prediction:

\[
M_t = \begin{pmatrix}
\left(\alpha_1 \mid v_t \right) + \left(\alpha_2 \mid \omega_t \right) & 0 \\
0 & \left(\alpha_3 \mid v_t \right) + \left(\alpha_4 \mid \omega_t \right)
\end{pmatrix}
\]

Motion noise

\[
Q_t = \begin{pmatrix}
\sigma_r^2 & 0 \\
0 & \sigma_r^2
\end{pmatrix}
\]

Measurement noise

\[
\mu_{t-1}^a = \begin{pmatrix}
\mu_{t-1}^T (0 \ 0)^T (0 \ 0)^T
\end{pmatrix}
\]

Augmented state mean

\[
\Sigma_{t-1}^a = \begin{pmatrix}
\Sigma_{t-1} & 0 & 0 \\
0 & M_t & 0 \\
0 & 0 & Q_t
\end{pmatrix}
\]

Augmented covariance

\[
\chi_{t-1}^a = \begin{pmatrix}
\mu_{t-1}^a \\
\mu_{t-1}^a + \gamma \sqrt{\Sigma_{t-1}^a} \\
\mu_{t-1}^a - \gamma \sqrt{\Sigma_{t-1}^a}
\end{pmatrix}
\]

Sigma points

\[
\chi_t^x = g(u_t + \chi_t^u, \chi_{t-1}^x)
\]

Prediction of sigma points

\[
\overline{\mu}_t = \sum_{i=0}^{2L} w_m^i \chi_{i,t}^x
\]

Predicted mean

\[
\overline{\Sigma}_t = \sum_{i=0}^{2L} w_c^i \left(\chi_{i,t}^x - \overline{\mu}_t \right) \left(\chi_{i,t}^x - \overline{\mu}_t \right)^T
\]

Predicted covariance
UKF_localization ($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m$):

Correction:

$$
\overline{Z}_t = h(\chi_t^x) + \chi_t^z
$$

Measurement sigma points

$$
\hat{z}_t = \sum_{i=0}^{2L} w_m^i \overline{Z}_{i,t}
$$

Predicted measurement mean

$$
S_t = \sum_{i=0}^{2L} w_c^i \left(\overline{Z}_{i,t} - \hat{z}_t \right) \left(\overline{Z}_{i,t} - \hat{z}_t \right)^T
$$

Pred. measurement covariance

$$
\Sigma_t^{x,z} = \sum_{i=0}^{2L} w_c^i \left(\overline{\chi}_{i,t}^x - \overline{\mu}_t \right) \left(\overline{Z}_{i,t} - \hat{z}_t \right)^T
$$

Cross-covariance

$$
K_t = \Sigma_t^{x,z} S_t^{-1}
$$

Kalman gain

$$
\mu_t = \overline{\mu}_t + K_t \left(z_t - \hat{z}_t \right)
$$

Updated mean

$$
\Sigma_t = \bar{\Sigma}_t - K_t S_t K_t^T
$$

Updated covariance
1. **EKF_localization** (\(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m \)):

 Correction:

2. \[\begin{align*}
\hat{z}_t &= \left(\frac{\sqrt{(m_x - \overline{\mu}_{t,x})^2 + (m_y - \overline{\mu}_{t,y})^2}}{\tan 2(m_y - \overline{\mu}_{t,y}, m_x - \overline{\mu}_{t,x}) - \overline{\mu}_{t,\theta}} \right) \\
\text{Predicted measurement mean}
\end{align*} \]

3. \[H_t = \frac{\partial h(\overline{\mu}_t, m)}{\partial x} = \begin{pmatrix}
\frac{\partial r_t}{\partial \overline{\mu}_{t,x}} & \frac{\partial r_t}{\partial \overline{\mu}_{t,y}} & \frac{\partial r_t}{\partial \overline{\mu}_{t,\theta}} \\
\frac{\partial \phi_t}{\partial \overline{\mu}_{t,x}} & \frac{\partial \phi_t}{\partial \overline{\mu}_{t,y}} & \frac{\partial \phi_t}{\partial \overline{\mu}_{t,\theta}} \\
\end{pmatrix} \quad \text{Jacobian of \(h \) w.r.t location}
\]

4. \[Q_t = \begin{pmatrix}
\sigma_r^2 & 0 \\
0 & \sigma_r^2 \\
\end{pmatrix} \]

5. \[S_t = H_t \overline{\Sigma}_t H_t^T + Q_t \quad \text{Pred. measurement covariance} \]

6. \[K_t = \overline{\Sigma}_t H_t^T S_t^{-1} \quad \text{Kalman gain} \]

7. \[\mu_t = \overline{\mu}_t + K_t (z_t - \hat{z}_t) \quad \text{Updated mean} \]

8. \[\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t \quad \text{Updated covariance} \]
UKF Prediction Step
UKF Observation Prediction Step
UKF Correction Step
EKF Correction Step
Estimation Sequence

EKF PF UKF
Estimation Sequence

EKF

UKF
Prediction Quality

EKF

UKF
UKF Summary

• **Highly efficient**: Same complexity as EKF, with a constant factor slower in typical practical applications

• **Better linearization than EKF**: Accurate in first two terms of Taylor expansion (EKF only first term)

• **Derivative-free**: No Jacobians needed

• **Still not optimal!**
Kalman Filter-based System

- [Arras et al. 98]:
 - Laser range-finder and vision
 - High precision (<1 cm accuracy)

Courtesy of K. Arras
Multi-hypothesis Tracking
Localization With MHT

- Belief is represented by multiple hypotheses
- Each hypothesis is tracked by a Kalman filter

Additional problems:

- **Data association:** Which observation corresponds to which hypothesis?
- **Hypothesis management:** When to add / delete hypotheses?
- Huge body of literature on target tracking, motion correspondence etc.
MHT: Implemented System (1)

- Hypotheses are extracted from LRF scans.
- Each hypothesis has probability of being the correct one:
 \[H_i = \{ \hat{x}_i, \Sigma_i, P(H_i) \} \]

- Hypothesis probability is computed using Bayes’ rule:
 \[P(H_i | s) = \frac{P(s | H_i) P(H_i)}{P(s)} \]

- Hypotheses with low probability are deleted.
- New candidates are extracted from LRF scans.
 \[C_j = \{ z_j, R_j \} \]

[Jensfelt et al. ’00]
MHT: Implemented System (2)

Robot view | Pose candidates

Sensor data

Feature extraction

Generate pose candidates

MATCH existing? NO

Creative feature? YES

Update hypothesis

Create hypothesis

Courtesy of P. Jensfelt and S. Kristensen
MHT: Implemented System (3)
Example run

Map and trajectory

hypotheses vs. time

hypotheses

$P(H_{\text{best}})$

Courtesy of P. Jensfelt and S. Kristensen