Foundations of AI
13. Knowledge Representation: Modeling with Logic

Concepts, Actions, Time, & all the rest

Wolfram Burgard, Bernhard Nebel, and Luc De Raedt
Contents

- Knowledge Representation and Reasoning
- Concepts & Description logics
- Logical agents for the WUMPUS World
- Situation calculus
- The frame problem
- Time intervals and their description
Knowledge Representation and Reasoning

- Often, our agents need knowledge before they can start to act intelligently.
- They then also need some reasoning component to exploit the knowledge they have.
- Examples:
 - Knowledge about the important concepts in a domain.
 - Knowledge about actions one can perform in a domain.
 - Knowledge about temporal relationships between events.
 - Knowledge about the world and how properties are related to actions.
Categories and Objects

- We need to describe the objects in our world using categories
- Necessary to establish a common category system for different applications (in particular on the web)
- There are a number of quite general categories everybody and every application uses
The Upper Ontology: A General Category Hierarchy
How to describe more specialized things?

Use definitions and/or necessary conditions referring to other already defined concepts:

- a parent is a human with at least one child

More complex description:

- a proud-grandmother is a human, which is female with at least two children that are in turn parents whose children are all doctors
Reasoning Services in Description Logics

- **Subsumption**: Determine whether one description is more general than (subsumes) the other
- **Classification**: Create a subsumption hierarchy
- **Satisfiability**: Is a description satisfiable?
- **Instance relationship**: Is a given object instance of a concept description?
- **Instance retrieval**: Retrieve all objects for a given concept description
Special Properties of Description Logics

- Semantics of description logics (DLs) can be given using ordinary PL1
- Alternatively, DLs can be considered as modal logics
- Reasoning for most DLs is much more efficient than for PL1
- Nowadays, W3C standards such as OWL (formerly DAML+OIL) are based on description logics
Logic-Based Agents That Act

function KB-AGENT(\textit{percept}) returns an action

\textbf{static}: KB, a knowledge base
\hspace{1em} t, a counter, initially 0, indicating time

\texttt{TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))}
action \leftarrow \texttt{ASK(KB, MAKE ACTION QUERY(i))}
\texttt{TELL(KB, MAKE-ACTION-SENTENCE(action, t))}
t \leftarrow t + 1

\textbf{return} action

Query (Make-Action-Query): $\exists x Action(x, t)$

A variable assignment for x in the WUMPUS world example should give the following answers: turn(right), turn(left), forward, shoot, grab, release, climb
Reflex Agents

... only react to percepts.

Example of a percept statement (at time 5):

\[\text{Percept}(stench, \text{breeze}, \text{glitter}, \text{none}, \text{none}, 5) \]

1. \(\forall b, g, u, c, t[\text{Percept}(stench, b, g, u, c, t) \Rightarrow \text{Stench}(t)] \)
\(\forall s, g, u, c, t[\text{Percept}(s, \text{breeze}, g, u, c, t) \Rightarrow \text{Breeze}(t)] \)
\(\forall s, b, g, u, c, t[\text{Percept}(s, b, \text{glitter}, u, c, t) \Rightarrow \text{AtGold}(t)] \)

\[\ldots \]

2. Step: Choice of action

\(\forall t[\text{AtGold}(t) \Rightarrow \text{Action}(\text{grab}, t)] \)

\[\ldots \]

Note: Our reflex agent does not know when it should climb out of the cave and cannot avoid an infinite loop.
Model-Based Agents

... have an internal model

- of all basic aspects of their environment,
- of the executability and effects of their actions,
- of further basic laws of the world, and
- of their own goals.

Important aspect: How does the world change?

→ Situation calculus: (McCarthy, 63).
Situation Calculus

- A way to describe dynamic worlds with PL1.
- States are represented by terms.
- The world is in state s and can only be altered through the execution of an action: $do(a, s)$ is the resulting situation, if a is executed.
- Actions have preconditions and are described by their effects.
- Relations whose truth value changes over time are called fluents. Represented through a predicate with two arguments: the fluent and a state term. For example, $At(x, s)$ means, that in situation s, the agent is at position x. $Holding(y, s)$ means that in situation s, the agent holds object y.
- Atemporal or eternal predicates, e.g., $Portable(gold)$.
Example: WUMPUS-World

Let s_0 be the initial situation and

$$s_1 = do(\text{forward}, s_0)$$

$$s_2 = do(\text{turn(right)}, s_1)$$

$$s_3 = do(\text{forward}, s_2)$$
Description of Actions

Preconditions: In order to pick something up, it must be both present and portable:

$$\forall x, s[\text{Poss}(\text{grab}(x), s) \iff \text{Present}(x, s) \land \text{Portable}(x)]$$

In the WUMPUS-World:

$$\text{Portable}(\text{gold}), \forall s[\text{AtGold}(s) \Rightarrow \text{Present}(\text{gold}, s)]$$

Positive effect axiom:

$$\forall x, s[\text{Poss}(\text{grab}(x), s) \Rightarrow \text{Holding}(x, \text{do}(\text{grab}(x), s))]$$

Negative effect axiom:

$$\forall x, s \neg \text{Holding}(x, \text{do}(\text{release}(x), s))$$
The Frame Problem

We had: \(\text{Holding}(\text{gold}, s_0) \).

Following situation: \(\neg\text{Holding}(\text{gold}, \text{do}(\text{release}(\text{gold}), s_0)) \) ?

We had: \(\neg\text{Holding}(\text{gold}, s_0) \).

Following situation: \(\neg\text{Holding}(\text{gold}, \text{do}(\text{turn}(\text{right}), s_0)) \) ?

- We must also specify which *fluents* remain unchanged!

- The frame problem: Specification of the properties that *do not* change as a result of an action.

→ **Frame axioms** must also be specified.
Number of Frame Axioms

\[\forall a, x, s [\text{Holding}(x, s) \land (a \neq \text{release}(x)) \Rightarrow \text{Holding}(x, \text{do}(a, s))] \]

\[\forall a, x, s [\neg \text{Holding}(x, s) \land \{(a \neq \text{grab}(x)) \lor \neg \text{Poss}(\text{grab}(x), s)\} \Rightarrow \neg \text{Holding}(x, \text{do}(a, s))] \]

Can be very expensive in some situations, since \(O(|F| \times |A|) \) axioms must be specified, \(F \) being the set of fluents and \(A \) being the set of actions.
Successor-State Axioms

A more elegant way to solve the frame problem is to fully describe the successor situation:

\[\text{true after action} \iff \left[\text{action made it true} \lor \text{already true and the action did not falsify it} \right] \]

Example for \textit{grab}:

\[
\forall a, x, s[\text{Holding}(x, \text{do}(a, s)) \equiv \{(a = \text{grab}(x) \land \text{Poss}(a, s)) \lor (\text{Holding}(x, s) \land a \neq \text{release}(x))\}]\]

Can also be automatically compiled by only giving the effect axioms (and then applying \textit{explanation closure}). Here we suppose that only certain effects can appear.
Limits of this Version of Situation Calculus

- No explicit **time**. We cannot discuss how long an action will require, if it is executed.
- **Only one agent**. In principle, however, several agents can be modeled.
- **No parallel** execution of actions.
- **Discrete situations**. No continuous actions, such as moving an object from A to B.
- **Closed world**. Only the agent changes the situation.
- **Determinism**. Actions are always executed with absolute certainty.
 → Nonetheless, sufficient for many situations.
We can describe the temporal occurrence of event/actions:

- **absolute** by using a date/time system
- **relative** with respect to other event occurrences
- **quantitatively**, using time measurements (5 secs)
- **qualitatively**, using comparisons (before/overlaps)
Allen’s Interval Calculus

- Allen proposed a calculus about relative order of *time intervals*
- Allows us to describe, e.g.,
 - Interval I *occurs before* interval J
 - Interval J *occurs before* interval K
- and to conclude
 - Interval I *occurs before* interval K

→ 13 jointly exhaustive and pair-wise disjoint relations between intervals
Allen’s 13 Interval Relations

$I \rightarrow J$

$I < J, J > I$

before/after

$I \rightarrow J$

$ImJ, Jm^{-1}I$

meets

$I \rightarrow J$

$I o J, Jo^{-1}I$

overlaps

$I \leftrightarrow J$

$IsJ, Js^{-1}I$

starts

$I \leftrightarrow J$

$I dJ, Id^{-1}I$

during

$I \leftrightarrow J$

$If J, Jf^{-1}I$

finishes

$I \leftrightarrow J$

$I = J$
Examples

- Using Allen’s relation system one can describe temporal configurations as follows:
 \[X < Y, Y \circ Z, Z > X \]

- One can also use disjunctions (unions) of temporal relations:
 \[X(<, m)Y, Y(o, s)Z, Z > X \]
Reasoning in Allen’s Relations System

How do we reason in Allen’s system
- Checking whether a set of formulae is satisfiable
- Checking whether a temporal formula follows logically

➢ Use a constraint propagation technique for CSPs with infinite domains (3-consistency), based on composing relations
Constraint Propagation

Do that for every triple until nothing changes anymore, then CSP is 3-consistent.
Concluding Remarks: Use of Logical Formalisms

- In many (but not all) cases, full inference in PL1 is simply too slow (and therefore too unreliable).
- Often, special (logic-based) representational formalisms are designed for specific applications, for which specific inference procedures can be used. Examples:
 - Description logics for representing conceptual knowledge.
 - James Allen’s time interval calculus for representing qualitative temporal knowledge.
 - Planning: Instead of situation calculus, this is a specialized calculus (STRIPS) that allows us to address the frame problem.

→ Generality vs. efficiency
→ In every case, logical semantics is important!