Foundations of AI

4. Informed Search Methods

Heuristics, Local Search Methods, Genetic Algorithms

Wolfram Burgard and Bernhard Nebel
Contents

- Best-First Search
- A* and IDA*
- Local Search Methods
- Genetic Algorithms
Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the cost of a given node to the goal is in the form of an *evaluation function* f or h, which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the “best” f- or h-value.
General Algorithm

\[
\text{function } \text{BEST-FIRST-SEARCH}(\text{problem, EVAL-FN}) \text{ returns a solution sequence}
\]
\[
\text{inputs: problem, a problem}
\]
\[
\quad \text{Eval-Fn, an evaluation function}
\]
\[
\quad \text{Queueing-Fn} \leftarrow \text{a function that orders nodes by EVAL-FN}
\]
\[
\text{return GENERAL-SEARCH(problem, Queueing-Fn)}
\]

When \(h \) is always correct, we do not need to search!
Greedy Search

A possible way to judge the “worth” of a node is to estimate its distance to the goal.

\[h(n) = \text{estimated distance from } n \text{ to the goal} \]

The only real condition is that \(h(n) = 0 \) if \(n \) is a goal.

A best-first search with this function is called a greedy search.

Route-finding problem: \(h = \text{straight-line distance between two locations} \).
Greedy Search Example

<table>
<thead>
<tr>
<th>City</th>
<th>Distance to Bucharest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobrota</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>98</td>
</tr>
<tr>
<td>Rmnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy Search from *Arad* to *Bucharest*
Heuristics

The evaluation function h in greedy searches is also called a \textit{heuristic} function or simply a \textit{heuristic}.

- The word \textit{heuristic} is derived from the Greek word \v{e}urisko\v{e}in (note also: \v{e}ureka!)

- The mathematician Polya introduced the word in the context of problem solving techniques.

- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually generally incomplete).
 - Heuristics are methods that improve the search in the average-case.

→ In all cases, the heuristic is \textit{problem-specific} and \textit{focuses} the search!
A*: Minimization of the estimated path costs

A* combines the greedy search with the uniform-search strategy.

\[g(n) = \text{actual cost from the initial state to } n. \]

\[h(n) = \text{estimated cost from } n \text{ to the next goal.} \]

\[f(n) = g(n) + h(n), \text{ the estimated cost of the cheapest solution through } n. \]

Let \(h^*(n) \) be the actual cost of the optimal path from \(n \) to the next goal.

\(h \) is admissible if the following holds for all \(n \):

\[h(n) \leq h^*(n) \]

We require that for A*, \(h \) is admissible (straight-line distance is admissible).
A* Search Example

Straight-line distance to Bucharest

- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobrota: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 98
- Rimnicu Vilea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
A* Search from Arad to Bucharest
Contours in A*

Within the search space, contours arise in which for the given f-value all nodes are expanded.

Contours at $f = 380, 400, 420$
Example: Path Planning for Robots in a Grid-World
Optimality of A*

Claim: The first solution found has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f^*, but A* has found another node G_2 with $g(G_2) > f^*$.
Let n be a node on the path from the start to G that has not yet been expanded. Since h is admissible, we have

$$f(n) \leq f^*.$$

Since n was not expanded before G_2, the following must hold:

$$f(G_2) \leq f(n)$$

and

$$f(G_2) \leq f^*.$$

It follows from $h(G_2) = 0$ that

$$g(G_2) \leq f^*.$$

\rightarrow Contradicts the assumption!
Completeness and Complexity

Completeness:
If a solution exists, A* will find it provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant δ such that every operator has at least cost δ.

\rightarrow Only a finite number of nodes n with $f(n) \leq f^*$.

Complexity:
In the case where $|h^*(n) - h(n)| \leq O(\log(h^*(n)))$, only a sub-exponential number of nodes will be expanded.

Normally, growth is exponential because the error is proportional to the path costs.
Heuristic Function Example

\[h_1 = \text{the number of tiles in the wrong position} \]

\[h_2 = \text{the sum of the distances of the tiles from their goal positions (Manhatten distance)} \]
Empirical Evaluation

- \(d = \) distance from goal
- Average over 100 instances

<table>
<thead>
<tr>
<th>(d)</th>
<th>IDS</th>
<th>(A^*(h_1))</th>
<th>(A^*(h_2))</th>
<th>(d)</th>
<th>IDS</th>
<th>(A^*(h_1))</th>
<th>(A^*(h_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
<td>113</td>
<td>2.83</td>
<td>1.44</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>1301</td>
<td>211</td>
<td>–</td>
<td>1.45</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>3056</td>
<td>363</td>
<td>–</td>
<td>1.46</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>7276</td>
<td>676</td>
<td>–</td>
<td>1.47</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>18094</td>
<td>1219</td>
<td>–</td>
<td>1.48</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>39135</td>
<td>1641</td>
<td>–</td>
<td>1.48</td>
<td>1.26</td>
<td></td>
</tr>
</tbody>
</table>
Iterative Deepening A* Search (IDA*)

Idea: A combination of IDS and A*. All nodes inside a contour are searched.

```plaintext
function IDA*(problem) returns a solution sequence
inputs: problem, a problem
static: f-limit, the current f- COST limit
        root, a node

root ← MAKE-NODE(INITIAL-STATE[problem])
f-limit ← f- COST(root)
loop do
    solution, f-limit ← DFS-CONTOUR(root, f-limit)
    if solution is non-null then return solution
    if f-limit = ∞ then return failure; end

function DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f- COST limit
inputs: node, a node
        f-limit, the current f- COST limit
static: next-f, the f- COST limit for the next contour, initially ∞

if f- COST[node] > f-limit then return null, f- COST[node]
if GOAL-TEST[problem](STATE[node]) then return node, f-limit
for each node s in SUCCESSORS(node) do
    solution, new-f ← DFS-CONTOUR(s, f-limit)
    if solution is non-null then return solution, f-limit
    next-f ← MIN(next-f, new-f); end
return null, next-f
```
Local **Search Methods**

In many problems, it is unimportant how the goal is reached – only the goal itself matters (8-queens problem, VLSI Layout, TSP).

If in addition a quality measure for states is given, a **local search** can be used to find solutions.

Idea: Begin with a randomly-chosen configuration and improve on it stepwise → **Hill Climbing**.
Hill Climbing

function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
 next ← a highest-valued successor of current
 if VALUE[next] < VALUE[current] then return current
 current ← next
end
Example: 8-Queens Problem

Selects a column and moves the queen to the square with the fewest conflicts.
Problems with Local Search Methods

- **Local maxima**: The algorithm finds a sub-optimal solution.
- **Plateaus**: Here, the algorithm can only explore at random.
- Ridges: Similar to plateaus.

Solutions:
- *Start over* when no progress is being made.
- “Inject smoke” \rightarrow random walk
- Tabu search: Do not apply the last n operators.

Which strategies (with which parameters) are successful (within a problem class) can usually only empirically be determined.
Simulated Annealing

In the simulated annealing algorithm, “smoke” is injected systematically: first a lot, then gradually less.

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
         schedule, a mapping from time to “temperature”
static: current, a node
        next, a node
        T, a “temperature” controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T=0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] − VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^{ΔE/T}
```

Has been used since the early 80’s for VSLI layout and other optimization problems.
Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by “crossing”, “mutating”, and “selecting” successful solutions.

Ingredients:
- Coding of a solution into a string of symbols or bit-string
- A fitness function to judge the worth of configurations
- A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.
Selection, Mutation, and Crossing

Many variations:
how selection will be applied, what type of cross-overs will be used, etc.

Selektion von Individuen
anhand der Fitness-Funktion
und Paarung

Kreuzen
Festlegung wo aufgebrochen
wird und neu zusammenfügen

Mutation
Mit einer gewissen kleinen
Wahrscheinlichkeit wird etwas
im String geändert.
Summary

- **Heuristics** focus the search
- **Best-first search** expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal h we obtain a **greedy search**.
- The minimization of $f(n) = g(n) + h(n)$ combines uniform and greedy searches. When $h(n)$ is admissible, i.e., h^* is never overestimated, we obtain the **A*** search, which is complete and optimal.
- **IDA*** is a combination of the iterative-deepening and A* searches.
- **Local search methods** only ever work on one state, attempting to improve it step-wise.
- **Genetic algorithms** imitate evolution by combining good solutions.