Introduction to Mobile Robotics

Probabilistic Motion Models

Wolfram Burgard
Cyrill Stachniss
Giorgio Grisetti
Maren Bennewitz
Christian Plagemann
Robot Motion

- Robot motion is inherently uncertain.
- How can we model this uncertainty?
Dynamic Bayesian Network for Controls, States, and Sensations
Probabilistic Motion Models

• To implement the Bayes Filter, we need the transition model $p(x | x', u)$.

• The term $p(x | x', u)$ specifies a posterior probability, that action u carries the robot from x' to x.

• In this section we will specify, how $p(x | x', u)$ can be modeled based on the motion equations.
Coordinate Systems

• In general the configuration of a robot can be described by six parameters.

• Three-dimensional cartesian coordinates plus three Euler angles pitch, roll, and tilt.

• Throughout this section, we consider robots operating on a planar surface.

• The state space of such systems is three-dimensional \((x,y,\theta)\).
Typical Motion Models

• In practice, one often finds two types of motion models:
 • Odometry-based
 • Velocity-based (dead reckoning)

• Odometry-based models are used when systems are equipped with wheel encoders.
• Velocity-based models have to be applied when no wheel encoders are given.
• They calculate the new pose based on the velocities and the time elapsed.
Example Wheel Encoders

These modules require +5V and GND to power them, and provide a 0 to 5V output. They provide +5V output when they "see" white, and a 0V output when they "see" black.

These disks are manufactured out of high quality laminated color plastic to offer a very crisp black to white transition. This enables a wheel encoder sensor to easily see the transitions.

Source: http://www.active-robots.com/
Dead Reckoning

- Derived from “deduced reckoning.”
- Mathematical procedure for determining the present location of a vehicle.
- Achieved by calculating the current pose of the vehicle based on its velocities and the time elapsed.
Reasons for Motion Errors

- ideal case
- bump
- different wheel diameters
- carpet

and many more ...
Odometry Model

• Robot moves from $\langle x, y, \theta \rangle$ to $\langle x', y', \theta' \rangle$.

• Odometry information $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$.

\[
\delta_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}
\]
\[
\delta_{rot1} = \text{atan2}(y'-y, x'-x) - \bar{\theta}
\]
\[
\delta_{rot2} = \bar{\theta}' - \bar{\theta} - \delta_{rot1}
\]
The atan2 Function

- Extends the inverse tangent and correctly copes with the signs of x and y.

\[
\text{atan2}(y, x) = \begin{cases}
\text{atan}(y/x) & \text{if } x > 0 \\
\text{sign}(y) \left(\pi - \text{atan}(|y/x|) \right) & \text{if } x < 0 \\
0 & \text{if } x = y = 0 \\
\text{sign}(y) \pi/2 & \text{if } x = 0, y \neq 0
\end{cases}
\]
Noise Model for Odometry

- The measured motion is given by the true motion corrupted with noise.

\[
\begin{align*}
\hat{\delta}_{\text{rot1}} &= \delta_{\text{rot1}} + \varepsilon_1 |\delta_{\text{rot1}}| + \varepsilon_2 |\delta_{\text{trans}}| \\
\hat{\delta}_{\text{trans}} &= \delta_{\text{trans}} + \varepsilon_3 |\delta_{\text{trans}}| + \varepsilon_4 |\delta_{\text{rot1}} + \delta_{\text{rot2}}| \\
\hat{\delta}_{\text{rot2}} &= \delta_{\text{rot2}} + \varepsilon_1 |\delta_{\text{rot2}}| + \varepsilon_2 |\delta_{\text{trans}}|
\end{align*}
\]
Typical Distributions for Probabilistic Motion Models

Normal distribution

\[\mathcal{N}(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{x^2}{2\sigma^2}}\]

Triangular distribution

\[\mathcal{T}(x) = \begin{cases} 0 & \text{if } |x| > \sqrt{6\sigma^2} \\ \frac{\sqrt{6\sigma^2} - |x|}{6\sigma^2} & \text{if } |x| \leq \sqrt{6\sigma^2} \end{cases}\]
Calculating the Probability (zero-centered)

- For a normal distribution
 1. Algorithm `prob_normal_distribution(a,b)`:
 2. return \[\frac{1}{\sqrt{2\pi} b^2} \exp \left\{ -\frac{1}{2} \frac{a^2}{b^2} \right\} \]

- For a triangular distribution
 1. Algorithm `prob_triangular_distribution(a,b)`:
 2. return \[\max \left\{ 0, \frac{1}{\sqrt{6} b} - \frac{|a|}{6 b^2} \right\} \]
Calculating the Posterior
Given x, x', and u

1. Algorithm \texttt{motion_model_odometry}(x,x',u)
2. \[\delta_{\text{trans}} = \sqrt{(x'-x)^2 + (y'-y)^2} \]
3. \[\delta_{\text{rot1}} = \text{atan2}(y'-y, x'-x) - \bar{\theta} \]
4. \[\delta_{\text{rot2}} = \bar{\theta}' - \bar{\theta} - \delta_{\text{rot1}} \]
5. \[\hat{\delta}_{\text{trans}} = \sqrt{(x'-x)^2 + (y'-y)^2} \]
6. \[\hat{\delta}_{\text{rot1}} = \text{atan2}(y'-y, x'-x) - \bar{\theta} \]
7. \[\hat{\delta}_{\text{rot2}} = \theta' - \theta - \hat{\delta}_{\text{rot1}} \]
8. \[p_1 = \text{prob}(\delta_{\text{rot1}} - \hat{\delta}_{\text{rot1}}, \alpha_1 \mid \hat{\delta}_{\text{rot1}} \mid + \alpha_2 \hat{\delta}_{\text{trans}}) \]
9. \[p_2 = \text{prob}(\delta_{\text{trans}} - \hat{\delta}_{\text{trans}}, \alpha_3 \hat{\delta}_{\text{trans}} + \alpha_4 (\mid \hat{\delta}_{\text{rot1}} \mid + \mid \hat{\delta}_{\text{rot2}} \mid)) \]
10. \[p_3 = \text{prob}(\delta_{\text{rot2}} - \hat{\delta}_{\text{rot2}}, \alpha_1 \mid \hat{\delta}_{\text{rot2}} \mid + \alpha_2 \hat{\delta}_{\text{trans}}) \]
11. return \[p_1 \cdot p_2 \cdot p_3 \]
Application

- Repeated application of the sensor model for short movements.
- Typical banana-shaped distributions obtained for 2d-projection of 3d posterior.
Sample-based Density Representation
Sample-based Density Representation

![Graph showing a density function](image)
How to Sample from Normal or Triangular Distributions?

• Sampling from a normal distribution
 1. Algorithm `sample_normal_distribution(b)`:

 2. return \[\frac{1}{2} \sum_{i=1}^{12} \text{rand}(-b, b) \]

• Sampling from a triangular distribution
 1. Algorithm `sample_triangular_distribution(b)`:

 2. return \[\frac{\sqrt{6}}{2} [\text{rand}(-b, b) + \text{rand}(-b, b)] \]
Normally Distributed Samples

![Graph showing a normal distribution with 10^6 samples]
For Triangular Distribution

- 10^3 samples
- 10^4 samples
- 10^5 samples
- 10^6 samples
Rejection Sampling

• Sampling from arbitrary distributions

1. Algorithm \texttt{sample_distribution}(f,b):
2. repeat
3. \quad x = \texttt{rand}(-b, b)
4. \quad y = \texttt{rand}(0, \max\{f(x) \mid x \in (-b, b)\})
5. until \quad (y \leq f(x))
6. return \quad x
Example

- Sampling from

\[f(x) = \begin{cases}
 \text{abs}(x) & x \in [-1; 1] \\
 0 & \text{otherwise}
\end{cases} \]
Sample Odometry Motion Model

1. Algorithm `sample_motion_model(u, x)`:
 \[u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x = \langle x, y, \theta \rangle \]

 1. \[\hat{\delta}_{rot1} = \delta_{rot1} + \text{sample}(\alpha_1 | \delta_{rot1} | + \alpha_2 \delta_{trans}) \]
 2. \[\hat{\delta}_{trans} = \delta_{trans} + \text{sample}(\alpha_2 \delta_{trans} + \alpha_4 (| \delta_{rot1} | + | \delta_{rot2} |)) \]
 3. \[\hat{\delta}_{rot2} = \delta_{rot2} + \text{sample}(\alpha_1 | \delta_{rot2} | + \alpha_2 \delta_{trans}) \]

 4. \[x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1}) \]
 5. \[y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1}) \]
 6. \[\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2} \]

 7. Return \[\langle x', y', \theta' \rangle \]
Sampling from Our Motion Model
Examples (Odometry-Based)
Velocity-Based Model
Equation for the Velocity Model

Center of circle:

\[
\begin{pmatrix}
 x^* \\
 y^*
\end{pmatrix} = \begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 -\lambda \sin \theta \\
 \lambda \cos \theta
\end{pmatrix} = \begin{pmatrix}
 \frac{x-x'}{2} + \mu(y-y') \\
 \frac{y+y'}{2} + \mu(x'-x)
\end{pmatrix}
\]

with

\[
\mu = \frac{1}{2} \frac{(x-x') \cos \theta + (y-y') \sin \theta}{(y-y') \cos \theta - (x-x') \sin \theta}
\]
Posterior Probability for Velocity Model

1: Algorithm motion_model_velocity(x_t, u_t, x_{t-1}):

2: \[\mu = \frac{1}{2} \frac{(x - x') \cos \theta + (y - y') \sin \theta}{(y - y') \cos \theta - (x - x') \sin \theta} \]

3: \[x^* = \frac{x + x'}{2} + \mu(y - y') \]

4: \[y^* = \frac{y + y'}{2} + \mu(x' - x) \]

5: \[r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2} \]

6: \[\Delta \theta = \text{atan2}(y' - y^*, x' - x^*) - \text{atan2}(y - y^*, x - x^*) \]

7: \[\hat{v} = \frac{\Delta \theta}{\Delta t} r^* \]

8: \[\hat{\omega} = \frac{\Delta \theta}{\Delta t} \]

9: \[\hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega} \]

10: return prob(\(v - \hat{v}, \alpha_1 |v| + \alpha_2 |\omega|\)) \cdot prob(\(\omega - \hat{\omega}, \alpha_3 |v| + \alpha_4 |\omega|\)) \cdot prob(\(\hat{\gamma}, \alpha_5 |v| + \alpha_6 |\omega|\))
Sampling from Velocity Model

1: Algorithm sample_motion_model_velocity(u_t, x_{t-1}):

2: \(\hat{v} = v + \text{sample}(\alpha_1|v| + \alpha_2|\omega|) \)

3: \(\hat{\omega} = \omega + \text{sample}(\alpha_3|v| + \alpha_4|\omega|) \)

4: \(\hat{\gamma} = \text{sample}(\alpha_5|v| + \alpha_6|\omega|) \)

5: \(x' = x - \frac{\hat{v}}{\hat{\omega}} \sin \theta + \frac{\hat{v}}{\hat{\omega}} \sin(\theta + \hat{\omega} \Delta t) \)

6: \(y' = y + \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega} \Delta t) \)

7: \(\theta' = \theta + \hat{\omega} \Delta t + \hat{\gamma} \Delta t \)

8: return $x_t = (x', y', \theta')^T$
Examples (velocity based)
Map-Consistent Motion Model

\[p(x | u, x') \neq p(x | u, x', m) \]

Approximation: \[p(x | u, x', m) = \eta \, p(x | m) \, p(x | u, x') \]
Summary

- We discussed motion models for odometry-based and velocity-based systems.
- We discussed ways to calculate the posterior probability $p(x|x', u)$.
- We also described how to sample from $p(x|x', u)$.
- Typically the calculations are done in fixed time intervals Δt.
- In practice, the parameters of the models have to be learned.
- We also discussed an extended motion model that takes the map into account.