Introduction to Mobile Robotics

Mapping with Elevation Maps

Wolfram Burgard
Cyrill Stachniss
Giorgio Grisetti
Maren Bennewitz
Christian Plagemann
Mapping for Outdoor Environments

• Autonomous outdoor navigation is a challenging problem
 • outdoor mapping
 • real time path planning
 • real time localization

• One of the key problems:
 efficient data structures for 3D range data
Typical Representations

• Collection of all 3D-Points
 • ≈200,000 Points per scan
 • low utility for navigation

• 3D-Grid
 • huge computational and memory requirements
 + higher accuracy

• 2D-Grid
 + low cost
 + efficient for navigation
 • approximation

Better approach: Elevation Maps
“Herbert” the Outdoor Robot

\[
\begin{align*}
\alpha &= \text{azimuth} \\
\gamma &= \text{tilt} \\
\begin{pmatrix} x \\ y \\ z \end{pmatrix} &= \begin{pmatrix} \left(\frac{\pi}{2} - \gamma \right) z_1 \\ \cos \left(\frac{\pi}{2} - \gamma \right) z_1 \\ \sin \left(\frac{\pi}{2} - \gamma \right) z_1 + z_0 \end{pmatrix} + d \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) + \sin \left(\frac{\pi}{2} - \gamma \right) \\ - \sin(\alpha) \cos \left(\frac{\pi}{2} - \gamma \right) \end{pmatrix}
\end{align*}
\]
Elevation Maps

Pros:
- 2½-D representation (vs. 3D for grids)
- Use a Kalman Filter to estimate the elevation.
- Elevation $h = \mu$.
- Path planning like in 2D

Cons:
- No vertical objects
- Only one level
- μ depends on viewpoint

→ **Extended Elevation Maps**
Typical Elevation Map
Extended Elevation Map

- Cells with vertical objects (**red**)
- Cells with a big vertical gap e.g. windows, bridges, door frames (**blue**)
- Cells, seen from above (**yellow**)
 → store gaps in cells to determine traversibility
Multiple Elevation Maps
Summary

• Data structure with constant time access
• Traversibility and obstacle detection
• Extension of elevation maps to deal with:
 • vertical objects
 • multi-level-extension