Motivation

- Usually:
 - **Given:** A logical theory (set of propositions)
 - **Question:** Does a proposition logically follow from this theory?
 - Reduction to unsatisfiability, which is coNP-complete (complementary to NP problems)
- Sometimes:
 - **Given:** A logical theory
 - **Wanted:** Model of the theory.
 - **Example:** Configurations that fulfill the constraints given in the theory.
 - Can be “easier” because it is enough to find one model

The Davis-Putnam Procedure

DP Function

Given a set of clauses Δ defined over a set of variables Σ, return "satisfiable" if Δ is satisfiable. Otherwise return "unsatisfiable".

1. If $\Delta = \emptyset$ return "satisfiable"
2. If $\square \in \Delta$ return "unsatisfiable"
3. **Unit-propagation Rule:** If Δ contains a unit-clause C, assign a truth-value to the variable in C that satisfies C, simplify Δ to Δ' and return $\text{DP}(\Delta')$.
4. **Splitting Rule:** Select from Σ a variable ν which has not been assigned a truth-value. Assign one truth value t to it, simplify Δ to Δ' and call $\text{DP}(\Delta')$.
 a. If the call returns "satisfiable", then return "satisfiable"
 b. Otherwise assign the other truth-value to ν in Δ, simplify to Δ'' and return $\text{DP}(\Delta'')$.

Foundations of AI

8. Satisfiability and Model Construction

Davis-Putnam, Phase Transitions, GSAT

Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller
Example (1)
\[\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\} \]

Properties of DP
- DP is complete, correct, and guaranteed to terminate.
- DP constructs a model, if one exists.
- In general, DP requires exponential time (splitting rule!)
- DP is polynomial on horn clauses, i.e., clauses with at most one positive literal.
 \((\neg A_1 \lor \ldots \lor \neg A_n \lor B \equiv \land_i A_i \rightarrow B)\)
 \(\rightarrow\) Heuristics are needed to determine which variable should be instantiated next and which value should be used
- In all SAT competitions so far, DP-based procedures have shown the best performance.

Example (2)
\[\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\} \]

DP on Horn Clauses (1)
Note:
1. The simplifications in DP on Horn clauses always generate Horn clauses.
2. A set of Horn clauses without unit clauses is satisfiable
 - All clauses have at least one negative literal
 - Assign false to all variables
3. If the first sequence of applications of the unit propagation rule in DP does not lead to the empty clause, a set of Horn clauses without unit clauses is generated (which is satisfiable according to (2))
DP on Horn Clauses (2)

4. Although a set of Horn clauses without a unit clause is satisfiable, DP may \textbf{not immediately recognize} it.
 a. If DP assigns \textit{false} to a variable, this cannot lead to an unsatisfiable set and after a sequence of unit propagations we are in \textit{the same situation as in 4}.
 b. If DP assigns \textit{true}, then we may get an empty clause - perhaps after unit propagation (and have to backtrack) - or the set is still satisfiable and we are in \textit{the same situation as in 4}.

DP on Horn Clauses (3)

In summary:

1. DP executes a \textbf{sequence of unit propagation} steps resulting in
 - an empty clause or
 - a set of Horn clauses without a unit clause, which is satisfiable

2. In the latter case, DP proceeds by \textbf{choosing} for one variable:
 - \textit{false}, which does not change the satisfiability
 - \textit{true}, which either
 - leads to an immediate contradiction (after unit propagation) and backtracking or
 - does not change satisfiability

 \textbf{Run time is polynomial} in the number of variables.

How Good is DP in the Average Case?

\begin{itemize}
 \item We know that SAT is NP-complete, i.e., in the worst case, it takes exponential time.
 \item This is clearly also true for the DP-procedure.

→ Couldn’t we do better in the \textbf{average case}?

 \item For CNF-formulae in which the probability for a positive appearance, negative appearance and non-appearance in a clause is 1/3, DP needs on average \textit{quadratic time} (Goldberg 79)!\end{itemize}

→ The probability that these formulae are satisfiable is, however, very high.

Phase Transitions …

Conversely, we can, of course, try to identify \textbf{hard to solve} problem instances.

Cheeseman et al. (IJCAI-91) came up with the following plausible conjecture:

All NP-complete problems have at least \textit{one order parameter and the hard to solve problems are around a critical value of this order parameter. This critical value (a \textit{phase transition}) separates one region from another, such as over-constrained and under-constrained regions of the problem space.}

Confirmation for graph coloring and Hamilton path … later also for other NP-complete problems.
Phase Transitions with 3-SAT

Constant clause length model (Mitchell et al., AAAI-92): Clause length k is given. Choose variables for every clause k and use the complement with probability 0.5 for each variable.

Phase transition for 3-SAT with a clause/variable ratio of approx. 4.3:

![Graph showing phase transition for 3-SAT](image)

Empirical Difficulty

The Davis-Putnam (DP) Procedure shows extreme runtime peaks at the phase transition:

![Graph showing empirical difficulty](image)

Note: Hard instances can exist even in the regions of the more easily satisfiable/unsatisfiable instances!

Notes on the Phase Transition

- When the probability of a solution is close to 1 (under-constrained), there are many solutions, and the first search path of a backtracking search is usually successful.
- If the probability of a solution is close to 0 (over-constrained), this fact can usually be determined early in the search.
- In the phase transition stage, there are many near successes (“close, but no cigar”).
 - (limited) possibility of predicting the difficulty of finding a solution based on the parameters.
 - (search intensive) benchmark problems are located in the phase region (but they have a special structure).

Local Search Methods for Solving Logical Problems

In many cases, we are interested in finding a satisfying assignment of variables (example CSP), and we can sacrifice completeness if we can “solve” much large instances this way.

Standard process for optimization problems: Local Search

- Based on a (random) configuration
- Through local modifications, we hope to produce better configurations
 - Main problem: local maxima
Dealing with Local Maxima

As a measure of the value of a configuration in a logical problem, we could use the number of satisfied constraints/clauses.

But local search seems inappropriate, considering we want to find a global maximum (all constraints/clauses satisfied).

By restarting and/or injecting noise, we can often escape local maxima.

Actually: Local search performs very well for finding satisfying assignments of CNF formulae (even without injecting noise).

GSAT

Procedure GSAT

INPUT: a set of clauses α, MAX-FLIPS, and MAX-TRIES

OUTPUT: a satisfying truth assignment of α, if found

begin
 for $i:=1$ to MAX-TRIES
 $T :=$ a randomly-generated truth assignment
 for $j:=1$ to MAX-FLIPS
 if T satisfies α then return T
 $v :=$ a propositional variable such that a change in its truth assignment gives the largest increase in the number of clauses of α that are satisfied by T.
 $T:=T$ with the truth assignment of v reversed
 end for
 end for
return "no satisfying assignment found"
end

The Search Behavior of GSAT

- In contrast to normal local search methods, we must also allow sideways movements!
- Most time is spent searching on plateaus.

State of the Art

- SAT competitions since beginning of the ’90
- Current SAT competitions (http://www.satcompetition.org/):
 In 2007:
 - Largest “industrial” instances: 1,000,000 literals with size 10,000,000
 - Complete solvers are as good as randomized ones!
Concluding Remarks

- DP-based SAT solver prevail:
 - Very efficient implementation techniques
 - Good branching heuristics
 - Clause learning
- Incomplete randomized SAT-solvers
 - are good (in particular on random instances)
 - but there is no dramatic increase in size of what they can solve
 - parameters are difficult to adjust