Probabilistic Robotics

Mobile Robot Localization

Wolfram Burgard
Cyrill Stachniss
Giorgio Grisetti
Maren Bennewitz
Christian Plagemann
Probabilistic Robotics

Key idea: Explicit representation of uncertainty

(using the calculus of probability theory)

- Perception = state estimation
- Action = utility optimization
Bayes Filters: Framework

- **Given:**
 - Stream of observations z and action data u:
 \[d_t = \{u_1, z_1, \ldots, u_t, z_t\} \]
 - Sensor model $P(z|x)$.
 - Action model $P(x|u,x')$.
 - Prior probability of the system state $P(x)$.

- **Wanted:**
 - Estimate of the state X of a dynamical system.
 - The posterior of the state is also called **Belief**:
 \[\text{Bel}(x_t) = P(x_t \mid u_1, z_1, \ldots, u_t, z_t) \]
Markov Assumption

\[p(z_t \mid x_{0:t}, z_{1:t}, u_{1:t}) = p(z_t \mid x_t) \]
\[p(x_t \mid x_{1:t-1}, z_{1:t}, u_{1:t}) = p(x_t \mid x_{t-1}, u_t) \]

Underlying Assumptions
- Static world
- Independent noise
- Perfect model, no approximation errors
Bayes Filters

\[\text{Bel}(x_t) = P(x_t \mid u_1, z_1 \ldots, u_t, z_t) \]

Bayes

\[= \eta \ P(z_t \mid x_t, u_1, z_1, \ldots, u_t) \ P(x_t \mid u_1, z_1, \ldots, u_t) \]

Markov

\[= \eta \ P(z_t \mid x_t) \ P(x_t \mid u_1, z_1, \ldots, u_t) \]

Total prob.

\[= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_1, z_1, \ldots, u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \ldots, u_t) \ dx_{t-1} \]

Markov

\[= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \ldots, u_t) \ dx_{t-1} \]

Markov

\[= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \ldots, z_{t-1}) \ dx_{t-1} \]

\[= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \text{Bel}(x_{t-1}) \ dx_{t-1} \]
\[Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1} \]

1. Algorithm **Bayes_filter** (Bel(x),d):
2. \(\eta = 0 \)
3. If \(d \) is a perceptual data item \(z \) then
4. For all \(x \) do
5. \(Bel'(x) = P(z \mid x)Bel(x) \)
6. \(\eta = \eta + Bel'(x) \)
7. For all \(x \) do
8. \(Bel'(x) = \eta^{-1}Bel'(x) \)
9. Else if \(d \) is an action data item \(u \) then
10. For all \(x \) do
11. \(Bel'(x) = \int P(x \mid u, x') \ Bel(x') \ dx' \)
12. Return \(Bel'(x) \)
Bayes Filters are Frequently used Robotics

\[Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1} \]

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)
Example: Robot Localization using a Bayes Filter

- **Action**: motion information of the robot
- **Perception**: compare the robot's sensor observations to the model of the world

- Particle filters are a way to **efficiently** represent non-Gaussian distribution

- **Basic principle**
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest
Mathematical Description

- Set of weighted samples

\[S = \{ \langle s[^{i}], w[^{i}] \rangle \mid i = 1, \ldots, N \} \]

State hypothesis \hspace{2cm} Importance weight

- The samples represent the posterior

\[p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[^{i}]}(x) \]
Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution

- Compute the importance weights:
 \[\text{weight} = \frac{\text{target distribution}}{\text{proposal distribution}} \]

- Resampling: “Replace unlikely samples by more likely ones”

[Derivation of the MCL equations on the blackboard]
Particle Filters
Sensor Information: Importance Sampling

\[\text{Bel}(x) \leftarrow \alpha \frac{p(z \mid x) \text{Bel}^- (x)}{\text{Bel}^- (x)} \]

\[w \leftarrow \alpha \frac{p(z \mid x) \text{Bel}^- (x)}{\text{Bel}^- (x)} = \alpha \, p(z \mid x) \]
Robot Motion

\[
Bel^-(x) \leftarrow \int p(x | u, x') Bel(x') \, dx'
\]
Sensor Information: Importance Sampling

\[Bel(x) \leftarrow \alpha p(z \mid x) Bel^{-}(x) \]

\[w \leftarrow \frac{\alpha p(z \mid x) Bel^{-}(x)}{Bel^{-}(x)} = \alpha p(z \mid x) \]
Robot Motion

\[Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') \, dx' \]
Particle Filter Algorithm

\[Bel(x_t) = \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_{t-1}) Bel(x_{t-1}) \, dx_{t-1} \]

- draw \(x_{t-1}^i \) from \(Bel(x_{t-1}) \)
- draw \(x_t^i \) from \(p(x_t \mid x_{t-1}^i, u_{t-1}) \)
- Importance factor for \(x_t^i \):

\[
\begin{align*}
 w_t^i &= \frac{\text{target distribution}}{\text{proposal distribution}} \\
 &= \frac{\eta p(z_t \mid x_t) \, p(x_t \mid x_{t-1}, u_{t-1}) \, Bel(x_{t-1})}{p(x_t \mid x_{t-1}, u_{t-1}) \, Bel(x_{t-1})} \\
 &\propto p(z_t \mid x_t)
\end{align*}
\]
Particle Filter Algorithm

1. Algorithm **particle_filter**\((S_{t-1}, u_{t-1} z_t): \)

2. \(S_t = \emptyset, \quad \eta = 0 \)

3. **For** \(i = 1 \ldots n \) \hspace{1cm} \textit{Generate new samples}

4. Sample index \(j(i) \) from the discrete distribution given by \(w_{t-1} \)

5. Sample \(x_i^j \) from \(p(x_t | x_{t-1}, u_{t-1}) \) using \(x_{t-1}^{j(i)} \) and \(u_{t-1} \)

6. \(w_i^j = p(z_t | x_i^j) \) \hspace{1cm} \textit{Compute importance weight}

7. \(\eta = \eta + w_i^j \) \hspace{1cm} \textit{Update normalization factor}

8. \(S_t = S_t \cup \{ < x_i^j, w_i^j > \} \) \hspace{1cm} \textit{Insert}

9. **For** \(i = 1 \ldots n \)

10. \(w_t^i = w_t^i / \eta \) \hspace{1cm} \textit{Normalize weights}
Resampling

- **Given**: Set S of weighted samples.

- **Wanted**: Random sample, where the probability of drawing x_i is given by w_i.

- Typically done n times with replacement to generate new sample set S'.
Resampling

- Roulette wheel
- Binary search, $n \log n$

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance
Resampling Algorithm

1. Algorithm **systematic_resampling**(S, n):

2. \(S' = \emptyset, c_1 = w^1 \)

3. **For** \(i = 2 \ldots n \) **Generate cdf**

4. \(c_i = c_{i-1} + w^i \)

5. \(u_1 \sim U[0, n^{-1}], i = 1 \) **Initialize threshold**

6. **For** \(j = 1 \ldots n \) **Draw samples …**

7. **While** (\(u_j > c_i \)) **Skip until next threshold reached**

8. \(i = i + 1 \)

9. \(S' = S' \cup \{ < x^i, n^{-1} > \} \) **Insert**

10. \(u_{j+1} = u_j + n^{-1} \) **Increment threshold**

11. **Return** \(S' \)

Also called **stochastic universal sampling**
Proximity Sensor Model Reminder

![Graphs showing probability distribution for measured distance](image)

- **Laser sensor**
- **Sonar sensor**
Sample-based Localization (sonar)
Initial Distribution
After Incorporating Ten Ultrasound Scans
After Incorporating 65 Ultrasound Scans
Estimated Path
Using Ceiling Maps for Localization

[Dellaert et al. 99]
Vision-based Localization
Under a Light

Measurement z: $P(z|x)$:
Next to a Light

Measurement z: $P(z|x)$:
Elsewhere

Measurement z: $P(z|x)$:
Global Localization Using Vision
Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering.
- They represent the posterior by a set of weighted samples.
- They can model non-Gaussian distributions.
- Proposal to draw new samples.
- Weight to account for the differences between the proposal and the target.
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter.
Summary – PF Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.