Machine Learning

- Can be roughly divided into:
 - Supervised Learning: Trying to learn in order to predict an class or a value
 - Unsupervised Learning: Trying to group similar examples together or to find interesting patterns in the data

Supervised Learning

- Algorithms (small example set)
 - Decision Tree Learning
 - Rule Induction
 - Neural Networks
 - SVM
 - ...

Unsupervised Learning

- Algorithms (small example set)
 - Clustering
 - K-Means, Spectral Clustering, ...
 - Local Pattern Mining
 - Item set mining, sub-sequence mining, subgraph mining
 - Association Rules
 - ...

Foundations of AI
17. Machine Learning Revisted
Supervised and Unsupervised Learning

Wolfram Burgard, Bernhard Nebel, and Andreas Karwath
Supervised Learning: Rule Induction

• Method 1:
 – Learn decision tree, convert to rules

• Method 2:
 – Sequential covering algorithm:
 • Learn one rule with high accuracy, any coverage
 • Remove positive examples covered by this rule
 • Repeat

Sequential Covering Algorithm
Sequential-Covering(Target_attribute, Attributes, Examples, Threshold)
Output: Set of Rules

• Learned_rules ← { }
• Rule ← Learn-one-rule(Target_attribute, Attributes, Examples)
• While Performance(Rule, Examples) > Threshold, do
 • Learned_rules ← Learned_rules ∪ {Rule}
 • Examples ← Examples / {examples correctly classified by Rule}
 • Rule ← Learn-one-rule(Target_attribute, Attributes, Examples)
• Learned_rules ← sort Learned_rules according to Performance over Examples
• return Learned_rules

EnjoySports

<table>
<thead>
<tr>
<th>Sky</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>warm</td>
<td>normal</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>sunny</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cold</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>change</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>sunny</td>
<td>high</td>
<td>strong</td>
<td>cool</td>
<td>change</td>
<td>yes</td>
</tr>
</tbody>
</table>

Learn-One-Rule

IF Wind=weak THEN PlayTennis=yes
IF Wind=strong THEN PlayTennis=yes
IF Humidity=normal THEN PlayTennis=yes
IF Humidity=high THEN PlayTennis=no
...
Learn One Rule

General-to-Specific Search:
• Consider the most general rule (hypothesis) which matches every instances in the training set.
• Repeat
 – Add the attribute that most improves rule performance measured over the training set.
• Until the hypothesis reaches an acceptable level of performance.

General-to-Specific Beam Search (CN2):
• Rather than considering a single candidate at each search step, keep track of the k best candidates.

Learn One Rule

While Pos, do
Learn a NewRule
- NewRule := most general rule possible
- NewRuleNeg := Neg
- while NewRuleNeg, do
 1. Candidate_literals := generate candidates
 2. Best_literal := argmax L ∈ Candidate_literals Performance(SpecializeRule(NewRule, L))
 3. add Best_literal to NewRule preconditions
 4. NewRuleNeg := subset of NewRuleNeg that satisfies NewRule preconditions
- Learned_rules := Learned_rules + NewRule
- Pos := Pos \{members of Pos covered by NewRule
Return Learned_rules

Subtleties: Learn One Rule

• Easily generalizes to multi-valued target functions
• Choose evaluation function to guide search:
 – Entropy (i.e., information gain)
 – Sample accuracy: \(\frac{n_c}{n} \)
 – m-estimate \(\frac{n_c + mp}{n + m} \)

 • Where \(n_c \) correct rule predictions (support)
 • and \(n \) all predictions (coverage)

Variants of Rule Learning Programs

• Sequential or simultaneous covering of data?
• General to specific, or specific to general?
• Generate-and-test, or example-driven?
• Whether and how to post-prune?
• What statistical evaluation function?
• How to combine predictions for multiple classes?
Ripper

- A state of the art rule-learner (Cohen)
- Key idea:
 - apply reduced error pruning on rule set (IREP)
 - rule IF c_1 and c_2 and ... and c_n THEN class
 - post prune by consider deleting “c_i and ... and c_n”
 - once all rules have been learned optimize rule set R_1, ...
 - R_k
 - try to improve rules R_i by
 - growing and pruning
 - deleting
- Standard approach by now

Unsupervised Methods: Clustering

<table>
<thead>
<tr>
<th>Sky</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>warm</td>
<td>normal</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>sunny</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cold</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>change</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>sunny</td>
<td>high</td>
<td>strong</td>
<td>cool</td>
<td>change</td>
<td>yes</td>
</tr>
</tbody>
</table>

Clustering (1)

- Common technique for statistical data analysis (machine learning, data mining, pattern recognition, ...)
- Classification of a data set into subsets (clusters)
- Ideally, data in each subset have a similar characteristics (proximity according to distance function)

Clustering (2)

- Needed: distance (similarity / dissimilarity) function, e.g., Euclidian distance
- Clustering quality
 - Inter-clusters distance maximized
 - Intra-clusters distance minimized
- The quality depends on
 - Clustering algorithm
 - Distance function
 - The application (data)
Types of Clustering

- **Hierarchical Clustering**
 - Agglomerative Clustering (bottom up)
 - Divisive Clustering (top-down)

- **Partitional Clustering**
 - K-Means Clustering (hard & soft)
 - Gaussian Mixture Models (EM-based)

K-Means Clustering

- Partitions the data into k clusters (k is to be specified by the user)
- Find k reference vectors $m_j, j=1,...,k$ which best explain the data X
- Assign data vectors to nearest (most similar) reference m_i

$$
\left\|\mathbf{x}^t - m_i\right\| = \min_j \left\|\mathbf{x}^t - m_j\right\|
$$

\mathbf{x}^t is an r-dimensional data vector in a real-valued space. m_i is a reference vector (center of cluster = mean).

Reconstruction Error (K-Means as Compression Alg.)

- The total reconstruction error is defined as

$$
E\left(\left\{m_i, j=1,\ldots,k\right\} | \mathbf{X}\right) = \sum_t \sum_i b_i^t \left\|\mathbf{x}^t - m_i\right\|^2
$$

with

$$
b_i^t = \begin{cases}
1 & \text{if } \left\|\mathbf{x}^t - m_i\right\| = \min_j \left\|\mathbf{x}^t - m_j\right\| \\
0 & \text{otherwise}
\end{cases}
$$

- Find reference vectors which minimize the error
- Taking its derivative with respect to m_i and setting it to 0 leads to

$$
m_i = \frac{\sum_i b_i^t \mathbf{x}^t}{\sum_i b_i^t}
$$

K-Means Algorithm

- Initialize $m_i, i=1,\ldots,k$, for example, to k random \mathbf{x}^t
- Repeat
 - For all $\mathbf{x}^t \in \mathcal{X}$
 $$
 b_i^t \leftarrow \begin{cases}
 1 & \text{if } \left\|\mathbf{x}^t - m_i\right\| = \min_j \left\|\mathbf{x}^t - m_j\right\| \\
 0 & \text{otherwise}
 \end{cases}
 $$
 - For all $m_i, i=1,\ldots,k$
 $$
 m_i \leftarrow \frac{\sum_t b_i^t \mathbf{x}^t}{\sum_t b_i^t}
 $$
- Until m_i converge
- Recompute the cluster centers m_i, using current cluster membership
- Assign each \mathbf{x}^t to the closest cluster
K-Means Example

Strength of K-Means

- Easy to understand and to implement
- Efficient $O(nkt)$

 $n = \#\text{iterations}, k = \#\text{clusters}, t = \#\text{data points}$
- Converges to a local optimum (global optimum is hard to find)
- Most popular clustering algorithm

Weaknesses of K-Means

- User needs to specify $\#\text{clusters} (k)$
- Sensitive to initialization (strategy: use different seeds)
- Sensitive to outliers since all data points contribute equally to the mean (strategy: try to eliminate outliers)

An example

(A). Random selection of k centers

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids
An example (cont ...)

Iteration 2: (D). Cluster assignment

(E). Re-Compute centroids

Iteration 3: (F). Cluster assignment

(G). Re-Compute centroids

Weaknesses of k-means: Problems with outliers

(A): Undesirable clusters

(B): Ideal clusters

Soft Assignments

• So far, each data point was assigned to exactly one cluster
• A variant called soft k-means allows for making fuzzy assignments
• Data points are assigned to clusters with certain probabilities

Soft K-Means Clustering

• Each data point is given a soft assignment to all means
 \[c_{tk} = \frac{\exp(-\beta \|x^t - m_k\|^2)}{\sum_i \exp(-\beta \|x^t - m_i\|^2)}, \quad \sum_k c_{tk} = 1 \]
• \(\beta \) is a “stiffness” parameter and plays a crucial role
• Means are updated
 \[m_k = \frac{\sum_t c_{tk} x^t}{\sum_t c_{tk}} \]
• Repeat assignment and update step until assignments do not change anymore
Soft K-Means Clustering

- Points between clusters get assigned to both of them
- Points near the cluster boundaries play a partial role in several clusters
- Additional parameter β
- Clusters with varying shapes can be treated in a probabilistic framework (mixtures of Gaussians)

After Clustering

- Dimensionality reduction methods find correlations between features and group features
- Clustering methods find similarities between instances and group instances
- Allows knowledge extraction through number of clusters, prior probabilities, cluster parameters, i.e., center, range of features.
 Example: CRM, customer segmentation

Clustering as Preprocessing

- Estimated group labels h_j (soft) or b_j (hard) may be seen as the dimensions of a new k dimensional space, where we can then learn our discriminant or regressor.
- Local representation (only one b_j is 1, all others are 0; only few h_j are nonzero) vs Distributed representation (After PCA; all z_j are nonzero)

Summary

- K-Means is the most popular clustering algorithm
- It is efficient and easy to implement
- Converges to a local optimum
- A variant of hard k-means exists allowing soft assignments
- Soft k-means corresponds to the EM algorithm which is a general optimization procedure