Foundations of AI

18. IJCAI or

What is the Chinese Room?

Wolfram Burgard, Andreas Karwath,
Bernhard Nebel, and Martin Riedmiller
Contents

- The Publication Food Chain
- IJCAI and other outlets
- IJCAI 2009
 - How hard is it to manipulate an Election?
 - How convincing is Searl’s *Chinese Room* argument?
Where do text books come from?

- Text book such as “AI: A Modern Approach” are not the product of the ingenuity of the authors alone
- They compile and structure a lot of individual research results
The publication food chain

- **Before**: Idea & solution & results
- Pre-Publication: Technical Report
 - no review
- First discussion: Workshop
 - review for plausibility (acceptance rate 95%)
- Presentation to peers: Scientific Conferences
 - strict but fast review (acc. 15-30%)
- Archival publication: Scientific Journal
 - strict review with multiple rounds (acc. 30%)

Note: not all stages necessary
Publication Outlets: AI Conferences

- International Joint Conference on Artificial Intelligence *IJCAI* (bi-annual, odd years)
- European Conference on Artificial Intelligence *ECAI* (bi-annual, even years)
- American National AI Conference *AAAI* (annual, except when IJCAI is in the US)
- German AI Conference

- ... other conferences (e.g. application oriented)
- ... specialized conferences (planning, learning, robotics, etc)
Publication Outlets: AI Journals

- *Artificial Intelligence* Journal
 - The most prestigious AI journal (focusing on formal approaches)

- Journal of Artificial Intelligence Research
 - Free online journal with high reputation and short turn-around times

- AI Communication
 - Journal by ECCAI

- ... other (usually) specialized AI journals
International Joint Conference on Artificial Intelligence

- Takes place in different locations (e.g., 2009: Pasadena, 2011: Barcelona, 2013: Beijing)
- Approx. 1000 attendees
- Approx. 1200 submitted papers, 300 accepted
- Proceedings as hardcopy, CD, and online (back to 1969)
- 6 day conference
- including workshops (20-30) and tutorials (10-20)
- costs around 600-700k US-$ each time
- 100k US-$ spent on travel grants for students
IJCAI 2009 - Talks

- 4 invited talks, 1 keynote
- 3 award talks (Computer & Thought, Research Excellence)
- Technical papers (332):
 - Agent-based & multiagent systems 55
 - Constraints, satisfiability, search 43
 - Knowledge representation, reasoning, logic 51
 - Machine learning 66
 - Multidisciplinary & applications 20
 - Natural language processing 20
 - Planning & Scheduling 30
 - Robotics & Vision 11
 - Uncertainty in AI 18
 - Web & knowledge-based information systems 16
IJCAI 2009 – Freiburg

- 5 technical papers (1.5%)
 - Qualitative CSP, Finite CSP, and SAT: Comparing Methods for Qualitative Constraint-based Reasoning (Matthias Westphal, Stefan Wölfl)
 - On Combinations of Binary Qualitative Constraint Calculi (Stefan Wölfl, Matthias Westphal)
 - A Fixed-Parameter Tractable Algorithm for Spatio-Temporal Calendar Management (Bernhard Nebel, Jochen Renz)
 - Eliciting Honest Reputation Feedback in a Markov Setting (Jens Witkowski)
 - Learning Kinematic Models for Articulated Objects (Jürgen Sturm, Vijay Pradeep, Cyrill Stachniss, Christian Plagemann, Kurt Konolige, Wolfram Burgard)

- 1 Award
 - IJCAI/JAIR Best Paper / Honorable Mention: Malte Helmert
2 selected papers

- **Where Are the Really Hard Manipulation Problems? The Phase Transition in Manipulating the Veto Rule** (Toby Walsh)
 - Analyzing the claim that NP-hardness is a tool to prevent strategic manipulation in elections from an empirical point of view.

- **Is It Enough to Get the Behavior Right?** (Hector J. Levesque)
 - The Chinese Room argument, which says that *strong AI* is impossible because AI systems can only fake intelligent behavior, is challenged. The only paper with a philosophical touch at IJCAI 2009.
Elections and Social Choice

- Social Choice Theory:
 - Given a set of candidates, and a set of voters with preferences over the candidates, a social choice function (election rule) should return the most preferred candidate

- Subarea of Game Theory

- Interesting for preference aggregation (e.g. in CSPs), in coordination (e.g. in MAS), and in electronic communities and markets
Example: Choosing a lecturer for next semester

- Voting:
 - 10 students: Karwarth > Nebel > Burgard
 - 7 students: Nebel > Burgard > Karwarth
 - 15 students: Burgard > Nebel > Karwarth
 - 6 students: Nebel > Karwarth > Burgard

- Which one should do it?
- Many possibilities (sometimes ignoring parts of the preferences):
 - Plurality
 - Veto
 - Borda count
 - ...

Manipulation

- A social choice function (or election scheme) can be manipulated if by stating preferences insincerely, one can get a more favorable outcome (as an individual or group).
- Example:
 - For plurality, it can make more sense to state the second choice as the most preferably one, if one owns candidate would not get enough votes.
- If a social choice function is immune to manipulation, one calls it “incentive compatible.”
The Gibbard-Satterthwaite impossibility result

- Gibbard and Satterthwaite proved that any social choice function that handles more than 2 candidates, is surjective (allows all candidates to win), and is incentive compatible will also be a dictatorial choice function (only one voter decides)!
NP-hardness as a tool against manipulation

- All social choice function (election schemes) can be manipulated (Gibbard/Satterthwaite).
- However, it might be computationally hard to decide whether and how this could be done!
- For some election schemes, it can be proven that manipulation is NP-hard (for some, winner determination is actually NP-hard!)
- So here, NP-hardness is a GOOD thing!

- Since it is a worst-case notion, the question is, whether it appears in practice.
Manipulating elections according to the veto rule is NP-hard

- **Destructive** manipulation (avoiding a candidate) is actually easy (polynomial time)
- **Constructive** manipulation is NP-hard
- However, as shown in the paper, only for very few cases one gets a computationally hard *phase transition*
- Throwing in another random voter makes everything easy again
- For veto voting, the theoretical worst-case result seems to mostly be irrelevant.
- What about other election schemes?
Most papers at AI conference are about technical results (methods, algorithms, empirical results ...)

This paper takes up an issue from the 80’s voiced by the philosopher Searl, who states that strong AI is impossible
What is Intelligence?

- Turing:
 - Hard to tell
 - Let’s call a machine intelligent if it behaves intelligently
 - **Turing test**: If the (linguistic) behavior is indistinguishable from the human behavior over a long time, then a machine passes the test
 - Be careful with partial satisfaction of the test, which can very easily achieved by trickery!
What is Intelligence?

- Searl:
 - Whatever intelligence is, it cannot be achieved by a machine!
 - Machines might be able to simulate (fake) intelligent behavior, but it is not acting because of (real) intelligence
 - So, AI is doomed to failure – if AI is understood in the *strong sense*, namely, if we want to make machines intelligent (as humans are)
 - In AI research we do not care much about Searl’s argument ... nevertheless ...
The *Chinese Room* argument

- Let’s assume, AI has succeeded in creating a system that perfectly understands and generates Chinese sentences: `chinese.py`
- Instead of running this program, we could put Searl and `chinese.py` in a room, and Searl could process the inputs and generates outputs according to the rules of `chinese.py`
- It is obvious that Searl does not understand Chinese at all, while an outside observer would think the system understands Chinese (according to the Turing test)
Of course, Searl does not understand Chinese.

But the system consisting of Searl and the book `chinese.py` (CPU+program) understands Chinese!

Searl’s reply:
- Assume I read and memorize the book `chinese.py` and then throw it away.
- After that, I process the inputs and generate outputs as before.
- I still do not understand Chinese!
Type I and Type II books

- Implicit in Searl’s reply is that there are two types of books or programs:
 - **Type I**: You can memorize, but you do not understand Chinese afterwards
 - **Type II**: After you have memorized them, you understand Chinese (e.g., as a second language)
Can there be Type I books?

- While understanding Chinese as a second language (using a Type II book) is not interesting from an AI point of view, there are probably also Type II books using programming languages.
- The question is, if there can be Type I books for the Chinese room at all.
- Hard to tell.
- Let’s simplify this and consider the Summation Room.
The Summation Room

- An input is a list of 20 ten-digit numbers
- The required output is the sum
- Assume a book/program `sum20.py`
- Could be a lookup table
 - Type I book
- But a lookup table is too large: 10^{200}
- There are only 10^{100} atoms in the universe
Other books for the Summation Room

- One could write a program performing addition based on a 10x10 single digit addition table
 - This would be a Type II book!
 - Having memorized it, one really does summation and knows what one does (even when the name for the operation might be unknown)
- Even all other “small” books would implement addition as such (e.g. base 100 addition or parallel addition)
- There is no Type I book for the Summation Room
Summary

- Searl’s *Chinese Room* argument suggest that AI can only simulate intelligent behavior.
- This is based on a thought experiment, where a human memorizes a rule body and executing it, without understanding it.
- Difficult to make precise for Chinese language processing.
- More obvious for the *Summation Room*.
- However, here it is impossible to memorize a (small) rule set without doing (real) summation when executing the rules.
- So Searl’s answer to the *System reply* is not convincing.
Conclusion

- The interesting stuff is happening at scientific conferences (not in the text book)
- Try to read such papers (e.g. go to ijcai.org)
- For a Bachelor thesis in AI, you may want to aim to publish it at the German AI conference
- For a Master thesis, you may want to go for AAAI, ECAI or IJCAI
- But for now, you may want to relax (in the next few weeks)