Introduction to Mobile Robotics

Basics of LSQ Estimation, Geometric Feature Extraction

Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras

Slides by Kai Arras
Last update: June 2010
Feature Extraction: Motivation

Landmarks for:
- Localization
- SLAM
- Scene analysis

Examples:
- **Lines, corners, clusters:** good for indoor
- **Circles, rocks, plants:** good for outdoor
Features: Properties

A feature/landmark is a \textit{physical object} which is

- static
- perceptible
- (at least locally) \textit{unique}

Abstraction from the raw data...

- \textit{type} (range, image, vibration, etc.)
- \textit{amount} (sparse or dense)
- \textit{origin} (different sensors, map)

+ Compact, efficient, accurate, scales well, semantics
 - Not general
Feature Extraction

Can be subdivided into two subproblems:

- **Segmentation:** *Which* points contribute?
- **Fitting:** *How* do the points contribute?

\[P_i = (\rho_i, \theta_i, \sigma_{\rho_i}, \sigma_{\theta_i}) \]
Example: Local Map with Lines

Raw range data

Line segments
Example: Global Map with Lines

Expo.02 map
- 315 m²
- 44 Segments
- 8 kbytes
- 26 bytes / m²
- Localization accuracy ~1cm
Example: Global Map w. Circles

Victoria Park, Sydney

- Trees
Split and Merge

Split

No more Splits

Split

Merge

Picture by J. Tardos
Split and Merge

Algorithm

Split
- Obtain the line passing by the two extreme points
- Find the most distant point to the line
- If distance > threshold, split and repeat with the left and right point sets

Merge
- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments
Split and Merge: Improvements

• Residual analysis before split

\[
P_E \sum_{i = P_S} d_i^2 > P_B \sum_{i = P_S} d_i^2 + P_E \sum_{i = P_B} d_i^2
\]

\(P_S, P_E, P_B\) : start-, end-, break-point

Split only if the break point provides a "better interpretation" in terms of the error sum

[Castellanos 1998]
Split and Merge: Improvements

- Merge non-consecutive segments as a post-processing step.
Choice of the line representation matters!

Intercept-Slope

\[y = ax + b \]

\[
C = \begin{bmatrix}
\sigma_a^2 & \sigma_{ab} \\
\sigma_{ba} & \sigma_b^2
\end{bmatrix}
\]

Hessian model

\[x \cos \alpha + y \sin \alpha - r = 0 \]

\[
C = \begin{bmatrix}
\sigma_{\alpha}^2 & \sigma_{\alpha r} \\
\sigma_{r\alpha} & \sigma_r^2
\end{bmatrix}
\]

Each model has advantages and drawbacks
Fit Expressions

Given:
A set of n points in polar coordinates

Wanted:
Line parameters α, r

\[
\tan 2\alpha = \frac{\frac{2}{\Sigma w_i} \sum_{i < j} w_i w_j \rho_i \rho_j \sin(\theta_i + \theta_j) + \frac{1}{\Sigma w_i} \sum (w_i - \Sigma w_i) w_i \rho_i^2 \sin 2\theta_i}{\frac{2}{\Sigma w_i} \sum_{i < j} w_i w_j \rho_i \rho_j \cos(\theta_i + \theta_j) + \frac{1}{\Sigma w_i} \sum (w_i - \Sigma w_i) w_i \rho_i^2 \cos 2\theta_i}
\]

\[
r = \frac{\sum w_i \rho_i \cos(\theta_i - \alpha)}{\sum w_i}
\]

[Arras 1997]
LSQ Estimation

Regression, Least Squares-Fitting

$$\epsilon_i = x_i \cos \alpha + y_i \sin \alpha - r$$

$$S = \sum_{i=1}^{n} \epsilon_i^2$$

Solve the non-linear equation system

$$\frac{\partial S}{\partial \alpha} = 0 \quad \frac{\partial S}{\partial r} = 0$$

Solution (for points in Cartesian coordinates):

\rightarrow Solution on blackboard
Circle Extraction

Can be formulated as a \textbf{linear} regression problem

Given \(n \) points \(\mathcal{P} = \{P_i\}_{i=1}^{n} \) with \(P_i = (x_i \ y_i)^T \)

Circle equation: \((x_i - x_c)^2 + (y_i - y_c)^2 = r_c^2 \)

Develop circle equation

\[
\begin{align*}
 x_i^2 - 2x_ix_c + x_c^2 + y_i^2 - 2y_iy_c + y_c^2 &= r_c^2 \\
 (-2x_i \ -2y_i \ 1) \begin{pmatrix} x_c \\ y_c \\ x_c^2 + y_c^2 - r_c^2 \end{pmatrix} &= (-x_i^2 \ -y_i^2)
\end{align*}
\]
Circle Extraction

Leads to **overdetermined** equation system \(A \cdot x = b \)

\[
A = \begin{pmatrix}
-2x_1 & -2y_1 & 1 \\
-2x_2 & -2y_2 & 1 \\
\vdots & \vdots & \vdots \\
-2x_n & -2y_n & 1
\end{pmatrix} \quad b = \begin{pmatrix}
-x_1^2 - y_1^2 \\
-x_2^2 - y_2^2 \\
\vdots \\
-x_n^2 - y_n^2
\end{pmatrix}
\]

with vector of unknowns

\[
x = (x_c \quad y_c \quad x_c^2 + y_c^2 - r_c^2)^T
\]

Solution via **Pseudo-Inverse**

\[
x = (A^T A)^{-1} A^T \cdot b
\]

(assuming that \(A \) has full rank)
Fitting Curves to Points

Attention: Always know the errors that you minimize!

Algebraic versus geometric fit solutions [Gander 1994]
LSQ Estimation: Uncertainties?

How does the input uncertainty propagate over the fit expressions to the output?

$X_1, ..., X_n$: Gaussian input random variables

A, R : Gaussian output random variables
Example: Line Extraction

Wanted: Parameter Covariance Matrix

\[C_{AR} = \begin{bmatrix} \sigma_A^2 & \sigma_{AR} \\ \sigma_{AR} & \sigma_R^2 \end{bmatrix} \]

Simplified sensor model: all \(\sigma_{\theta_i}^2 = 0 \), independence

\[C_{AR} = F_X C_X F_X^T \]

Result: Gaussians in the parameter space
Line Extraction in Real Time

- **Robot Pygmalion**
 EPFL, Lausanne
- **CPU**: PowerPC 604e at 300 MHz
- **Sensor**: 2 SICK LMS
- **Line Extraction Times**: \(\sim 25 \text{ ms} \)