Foundations of Artificial Intelligence

Prof. Dr. W. Burgard, Prof. Dr. M. Riedmiller B. Frank, D. Joho, Dr. S. Lange

University of Freiburg

Summer Term 2011

Exercise Sheet 4

Due: Tuesday, June 21, 2011

Exercise 4.1 (CSPs)

The $S E N D+M O R E=M O N E Y$ problem consists in finding distinct digits for the letters D, E, M, N, O, R, S, Y such that S and M are different from zero, i.e. no leading zeros, and the equation

$$
S E N D+M O R E=M O N E Y
$$

is satisfied.
(a) Explain in a nutshell, why it would be good to formulate the problem as a constraint satisfaction problem?
(b) Formulate the problem as a constraint satisfaction problem, i.e. what are the variables, what constraints do we have, etc.
(c) Find a solution using forward checking and arc consistency. Give the search tree.
(Hint: consider the letters in the following order: O, M, Y, E, N, D, R, S.)

Exercise 4.2 (Minimax algorithm)

(a) Perform the minimax algorithm in the tree in Figure 1 using $\alpha \beta$-pruning. Traverse the tree from left to right. Annotate the nodes with their alpha and beta values.
(b) Can the nodes be ordered in such a way that $\alpha \beta$-pruning can cut off more branches? If so, give the order. Otherwise, argue why not.

Exercise 4.3 (Generalization of the Minimax algorithm)

Consider the problem of search in a three-player game (you may assume that no alliances are allowed) without the zero-sum condition. The players are called 1,2 , and 3 . Unlike in the case of two-player zero-sum games, the evaluation function now returns a triple (x_{1}, x_{2}, x_{3}) such that x_{i} is the value the node has for player i.
(a) Complete the game tree given below by annotating all interior nodes and the root node with the backed-up value triples.
(b) Assume that the value triple $(1,1,1)$ at the third leaf nodes from the left is replaced by $(0,1,2)$. Which problem arises now when you try to back up value triples? Suggest how to modify the back-up procedure to obtain a "robust" result at the root node.

Sp. 1
Sp. 2
Sp. 3

Exercise 4.4 (Joint Probability Distribution)
Given the joint probability distribution table

	A	$\neg A$
B	0.4	0.2
$\neg B$	0.1	0.3

where cell A, B specifies the probability for $P(A \wedge B)^{1}=0.4$, calculate the following probabilities:
(a) $P(A), P(B), P(\neg A)$, and $P(\neg B)$
(b) $P(A \vee B)$ and $P((A \vee B) \wedge \neg(A \wedge B))$
(c) $P(A \mid B)$ and $P(B \mid A)$

The exercise sheets may and should be handed in and be worked on in groups of three (3) students. Please fill the cover sheet ${ }^{2}$ and attach it to your solution.

[^0]
[^0]: ${ }^{1}$ shorthand for $P\left(X_{1}=A\right.$ and $\left.X_{2}=B\right)$
 ${ }^{2}$ http://ais.informatik.uni-freiburg.de/teaching/ss11/ki/cover-sheet.pdf

