Constraint Satisfaction Problems

A Constraint Satisfaction Problems (CSP) consists of
- a set of variables \(\{X_1, X_2, \ldots, X_n\} \) to which
- values \(\{d_1, d_2, \ldots, d_k\} \) can be assigned
- such that a set of constraints over the variables is respected

A CSP is solved by a variable assignment that satisfies all given constraints.

In CSPs, states are explicitly represented as variable assignments. CSP search algorithms take advantage of this structure.

The main idea is to exploit the constraints to eliminate large portions of search space.

Formal representation language with associated general inference algorithms

Example: Map-Coloring

- **Variables**: \(WA, NT, SA, Q, NSW, V, T \)
- **Values**: \(\{red, green, blue\} \)
- **Constraints**: adjacent regions must have different colors, e.g., \(NSW \neq V \)
Australian Capital Territory (ACT) and Canberra (inside NSW)

View of the Australian National University and Telstra Tower

One Solution

Solution assignment:
- \(WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\)
- Perhaps in addition \(ACT = \text{blue}\)

Constraint Graph

- a constraint graph can be used to visualize binary constraints
- for higher order constraints, hyper-graph representations might be used
- Nodes = variables, arcs = constraints

Variations

- Binary, ternary, or even higher arity (e.g. ALL_DIFFERENT)
- Finite domains \((d \text{ values}) \rightarrow d^n \text{ possible variable assignments}\)
- Infinite domains (reals, integers)
 - linear constraints: solvable (in P if real)
 - nonlinear constraints: unsolvable

Note: Our problem is 3-colorability for a planar graph
Applications

- Timetabling (classes, rooms, times)
- Configuration (hardware, cars, …)
- Spreadsheets
- Scheduling
- Floor planning
- Frequency assignments
- Sudoku
- …

Function Backtracking-Search(csp) returns a solution, or failure
return BACKTRACKING-SERACH(csp)

Function BACKTRACKING-SERACH(csp) returns a solution, or failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment then
add {var = value} to assignment
inferences ← INERENCE(csp, var, value)
if inferences ≠ failure then
add inferences to assignment
result ← BACKTRACKING-SERACH(csp)
if result ≠ failure then
return result
return failure

Backtracking Search over Assignments

- Assign values to variables step by step (order does not matter)
- Consider only one variable per search node!
- DFS with single-variable assignments is called backtracking search
- Can solve n-queens for \(n \approx 25 \)

Algorithm

function BACKTRACKING-SERACH(csp) returns a solution, or failure
return BACKTRACKING-SERACH(csp)

Example (1)
Improving Efficiency:
CSP Heuristics & Pruning Techniques

- Variable ordering: Which one to assign first?
- Value ordering: Which value to try first?
- Try to detect failures early on
- Try to exploit problem structure

→ Note: all this is not problem-specific!
Variable Ordering:
Most constrained first

- Most constrained variable:
 - choose the variable with the fewest remaining legal values
 → reduces branching factor!

Value Ordering:
Least Constraining Value First

- Given a variable,
 - choose first a value that rules out the fewest values in the remaining unassigned variables
 → We want to find an assignment that satisfies the constraints (of course, does not help if unsat.)

Rule out Failures early on:
Forward Checking

- Whenever a value is assigned to a variable, values that are now illegal for other variables are removed
- Implements what the ordering heuristics implicitly compute
- WA = red, then NT cannot become red
- If all values are removed for one variable, we can stop!
Forward Checking (1)

- Keep track of remaining values
- Stop if all have been removed

Forward Checking (2)

- Keep track of remaining values
- Stop if all have been removed

Forward Checking (3)

- Keep track of remaining values
- Stop if all have been removed

Forward Checking (4)

- Keep track of remaining values
- Stop if all have been removed
Forward Checking:
Sometimes it Misses Something

- Forward Checking propagates information from assigned to unassigned variables
- However, there is no propagation between unassigned variables

Arc Consistency

- A directed arc $X \rightarrow Y$ is "consistent" iff
 - for every value x of X, there exists a value y of Y, such that (x, y) satisfies the constraint between X and Y
- Remove values from the domain of X to enforce arc-consistency
- Arc consistency detects failures earlier
- Can be used as preprocessing technique or as a propagation step during backtracking

Arc Consistency Example

AC3 Algorithm

```python
function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components $(X, D, C)$
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
  $(X_i, X_j) \leftarrow$ REMOVE-FIRST(queue)
  if REVISE(csp, $X_i$, $X_j$) then
    if size of $D_i = 0$ then return false
    for each $X_k$ in $X_i$.NEIGHBORS - {$X_j$} do
      add $(X_k, X_i)$ to queue
  return true

function REVISE(csp, $X_i$, $X_j$) returns true iff we revise the domain of $X_i$
revised $\leftarrow$ false
for each $x$ in $D_i$ do
  if no value $y$ in $D_j$ allows $(x, y)$ to satisfy the constraint between $X_i$ and $X_j$ then
    delete $x$ from $D_i$,
    revised $\leftarrow$ true
return revised
```
Properties of AC3

- AC3 runs in $O(d^3n^2)$ time, with n being the number of nodes and d being the maximal number of elements in a domain.
- Of course, AC3 does not detect all inconsistencies (which is an NP-hard problem).

Problem Structure (1)

- CSP has two independent components
- Identifiable as connected components of constraint graph
- Can reduce the search space dramatically

Problem Structure (2): Tree-structured CSPs

- If the CSP graph is a tree, then it can be solved in $O(nd^2)$.
- General CSPs need in the worst case $O(d^n)$.

Idea: Pick root, order nodes, apply arc-consistency from leaves to root, and assign values starting at root.

Problem Structure (2): Tree-structured CSPs

- Pick any variable as root; choose an ordering such that each variable appears after its parent in the tree.
- Apply arc-consistency to (X_i, X_k), when X_i is the parent of X_k, for all $k = n$ down to 2.
- Now one can start at X_1 assigning values from the remaining domains without creating any conflict in one sweep through the tree!
- Algorithm linear in n.
Problem Structure (3):
Almost Tree-structured

Idea: Reduce the graph structure to a tree by fixing values in a reasonably chosen subset

![Tree Structure Diagram]

Instantiate a variable and prune values in neighboring variables is called **Conditioning**

Problem Structure (4):
Almost Tree-structured

Algorithm **Cutset Conditioning**:

1. Choose a subset S of the CSPs variables such that the constraint graph becomes a tree after removal of S. S is called a cycle cutset.
2. For each possible assignment of variables in S that satisfies all constraints on S
 - remove from the domains of the remaining variables any values that are inconsistent with the assignments for S, and
 - if the remaining CSP has a solution, return it together with the assignment for S

Note: Finding the smallest cycle cutset is NP hard, but several efficient approximation algorithms are known.

Another Method:
Tree Decomposition (1)

- Decompose problem into a set of connected sub-problems, where two sub-problems are connected when they share a constraint
- Solve sub-problems independently and combine solutions

Another Method:
Tree Decomposition (2)

- A tree decomposition must satisfy the following conditions:
 - Every variable of the original problem appears in at least one sub-problem
 - Every constraint appears in at least one sub-problem
 - If a variable appears in two sub-problems, it must appear in all sub-problems on the path between the two sub-problems
 - The connections form a tree
Another Method:
Tree Decomposition (3)

- Consider sub-problems as new mega-variables, which have values defined by the solutions to the sub-problems
- Use technique for tree-structured CSP to find an overall solution (constraint is to have identical values for the same variable)

Tree Width

- The aim is to make the subproblems as small as possible. **Tree width** w of a tree decomposition is the size of largest sub-problem minus 1
- **Tree width of a graph** is minimal tree width over all possible tree decompositions
- If a graph has tree width w and we know a tree decomposition with that width, we can solve the problem in $O(nd^{w+1})$
- Unfortunately, finding a tree decomposition with minimal tree width is NP-hard. However, there are heuristic methods that work well in practice.

Summary & Outlook

- **CSPs** are a special kind of search problem:
 - states are value assignments
 - goal test is defined by constraints
- **Backtracking** = DFS with one variable assigned per node. Other intelligent backtracking techniques possible
- **Variable/value ordering** heuristics can help dramatically
- **Constraint propagation** prunes the search space
- **Path-consistency** is a constraint propagation technique for triples of variables
- **Tree structure** of CSP graph simplifies problem significantly
- **Cutset conditioning** and **tree decomposition** are two ways to transform part of the problem into a tree
- CSPs can also be solved using **local search**