Foundations of Artificial Intelligence 6. Board Games Search Strategies for Games, Games with Chance, State of the Art

Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller

Why Board Games?

Board games are one of the oldest branches of AI (Shannon and Turing 1950).

- Board games present a very abstract and pure form of competition between two opponents and clearly require a form of "intelligence".
- The states of a game are easy to represent.
- The possible actions of the players are well-defined.
- $\rightarrow\,$ Realization of the game as a search problem
- $\rightarrow\,$ The world states are fully accessible
- $\rightarrow\,$ It is nonetheless a contingency problem, because the characteristics of the opponent are not known in advance.

Contents

Problems

Board games are not only difficult because they are contingency problems, but also because the search trees can become astronomically large.

Examples:

• Chess: On average 35 possible actions from every position; often, games have 50 moves per player, resulting in a search depth of 100: $\rightarrow 35^{100} \approx 10^{150}$ nodes in the search tree (with "only" 10^{40} legal chess positions).

Foundations of AI

• Go: On average 200 possible actions with ca. 300 moves $\rightarrow 200^{300} \approx 10^{700}$ nodes.

Good game programs have the properties that they

- delete irrelevant branches of the game tree,
- use good evaluation functions for in-between states, and
- look ahead as many moves as possible.

- Players are MAX and MIN, where MAX begins.
- Initial position (e.g., board arrangement)
- Operators (= legal moves)
- Termination test, determines when the game is over. Terminal state = game over.
- Strategy. In contrast to regular searches, where a path from beginning to end is simply a solution, MAX must come up with a strategy to reach a terminal state *regardless of what* MIN *does* → correct reactions to all of MIN's moves.

(University of Freiburg)

Foundations of AI

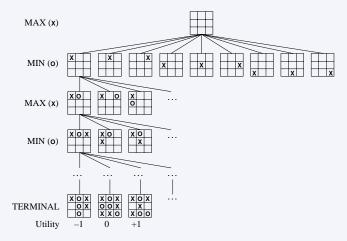
May 31, 2011

Minimax

- 1. Generate the complete game tree using depth-first search.
- 2. Apply the utility function to each terminal state.
- 3. Beginning with the terminal states, determine the utility of the predecessor nodes as follows:
 - Node is a MIN-node Value is the minimum of the successor nodes
 - Node is a MAX-node Value is the maximum of the successor nodes
 - From the initial state (root of the game tree), MAX chooses the move that leads to the highest value (minimax decision).

Note: Minimax assumes that MIN plays perfectly. Every weakness (i.e., every mistake MIN makes) can only improve the result for MAX.

Tic-Tac-Toe Example



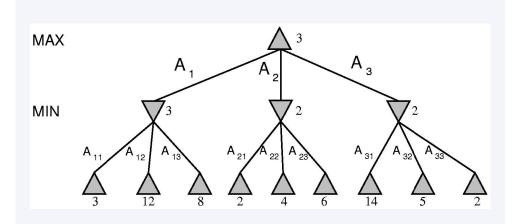
Every step of the search tree, also called game tree, is given the player's name whose turn it is (MAX- and MIN-steps).

When it is possible, as it is here, to produce the full search tree (game tree), the minimax algorithm delivers an optimal strategy for MAX.

University of Freiburg) Foundations of AI	
---	--

May 31, 2011 6 / 35

Minimax Example



Foundations of AI

Minimax Algorithm

Recursively calculates the best move from the initial state.

The term arg max _a \in ACTIONS(s) MIN-VALUE(RESULT(state, a))				
Cunction MAX-VALUE(state) returns a utility value				
if TERMINAL-TEST(state) then return UTILITY(state)				
$v \leftarrow -\infty$				
for each a in ACTIONS(state) do				
$v \leftarrow MAX(v, MIN-VALUE(RESULT(s, a)))$				
return v				
function MIN-VALUE(state) returns a utility value				
if TERMINAL-TEST(state) then return UTILITY(state)				
$v \leftarrow \infty$				
for each a in ACTIONS(state) do				
$v \leftarrow Min(v, Max-Value(Result(s, a)))$				
return v				

Note: Minimax only works when the game tree is not too deep. Otherwise, the minimax value must be approximated.

(University of Freiburg)

May 31, 2011

Evaluation Function - General

The preferred evaluation functions are weighted, linear functions:

$$w_1f_1 + w_2f_2 + \dots + w_nf_n$$

Foundations of AI

where the w's are the weights, and the f's are the features. [e.g., $w_1 = 3$, $f_1 =$ number of our own knights on the board]

The above linear sum makes a strong assumption: the contribution of each feature are independend. (not true: e.g. bishops in the endgame are more powerful, when there is more space)

The weights can be learned. The features, however, are often designed by human intuition and understandig

Evaluation Function

When the search space is too large, the game tree can be created to a certain depth only. The art is to correctly evaluate the playing position of the leaves.

Example of simple evaluation criteria in chess:

- Material value: pawn 1, knight/bishop 3, rook 5, queen 9
- Other: king safety, good pawn structure
- Rule of thumb: 3-point advantage = certain victory

The choice of evaluation function is decisive!

The value assigned to a state of play should reflect the chances of winning, i.e., the chance of winning with a 1-point advantage should be less than with a 3-point advantage.

(University of Freiburg)

Foundations of AI

May 31, 2011 10 / 3

When Should we Stop Growing the Tree?

Motivation: Return an answer within the allocated time.

- Fixed-depth search
- Better: iterative deepening search (stop, when time is over)
- but only stop and evaluate at 'quiescent' positions that won't cause large fluctuations in the evaluation function in the following moves. E.g. if one can capture a figure, then the position is not 'quiescent' because this might change the evaluation dramatically. Solution: Continue search at non quiescent positions, favorably by only allowing certain types of moves (e.g. capturing) to reduce search effort, until a quiescent position was reached.
- problem of limited depth search: horizon effect (see next slide)

Horizon Problem

Black to move

• Black has a slight material advantage

(University of Freiburg)

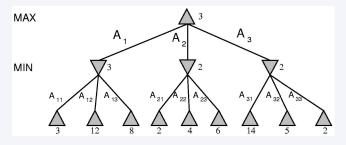
- ... but will eventually lose (pawn becomes a queen)
- A fixed-depth search cannot detect this because it thinks it can avoid it (on the other side of the horizon - because black is concentrating on the check with the rook, to which white must react).

Foundations of AI

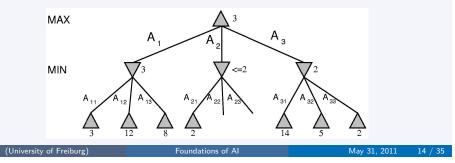
```
Alpha-Beta Pruning: General
```

If m > n we will never reach node n in the game.

Alpha-Beta Pruning



Improvement possible? We do not need to consider all nodes.



Alpha-Beta Pruning

Minimax algorithm with depth-first search

 α = the value of the best (i.e., highest-value) choice we have found so far at any choice point along the path for MAX.

 β = the value of the best (i.e., lowest-value) choice we have found so far at any choice point along the path for MIN.

May 31, 2011

13 / 35

When Can we Prune?

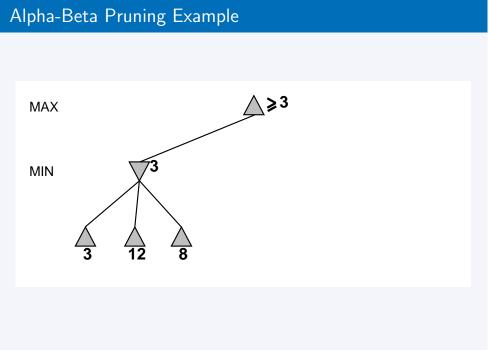
The following applies:

- α values of ${\rm MAX}$ nodes can never decrease
- β values of ${\mbox{\scriptsize MIN}}$ nodes can never increase
- (1) Prune below the MIN node whose β -bound is less than or equal to the α -bound of its MAX-predecessor node.
- (2) Prune below the MAX node whose α -bound is greater than or equal to the β -bound of its MIN-predecessor node.
- \rightarrow Provides the same results as the complete minimax search to the same depth (because only irrelevant nodes are eliminated).

(University of Freiburg)

Foundations of AI

May 31, 2011 17 / 35



Alpha-Beta Search Algorithm

function ALPHA-BETA-SEARCH(state) : $v \leftarrow MAX-VALUE(state, -\infty, +\infty)$	returns an action	
return the action in ACTIONS(state)	with value v	
function MAX-VALUE(state, α, β) retur	rns a utility value	
if TERMINAL-TEST(state) then return	n UTILITY(state)	
$v \leftarrow -\infty$		
for each a in ACTIONS(state) do		
$v \leftarrow Max(v, Min-Value(Result))$	$(s,a), \alpha, \beta))$	
if $v \geq \beta$ then return v		
$\alpha \leftarrow MAX(\alpha, v)$		
return v		
function MIN-VALUE(state, α, β) return	ns a utilitu value	_
if TERMINAL-TEST(<i>state</i>) then return	0	
$v \leftarrow +\infty$		
for each a in ACTIONS(state) do		
$v \leftarrow MIN(v, MAX-VALUE(RESULT($	$(s a) \alpha \beta$	
if $v < \alpha$ then return v	(0, w) , (0, p))	
$\beta \leftarrow MIN(\beta, v)$		
return v		

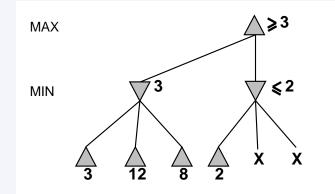
Initial call with MAX-VALUE(*initial-state*, $-\infty$, $+\infty$)

(University of Freiburg)

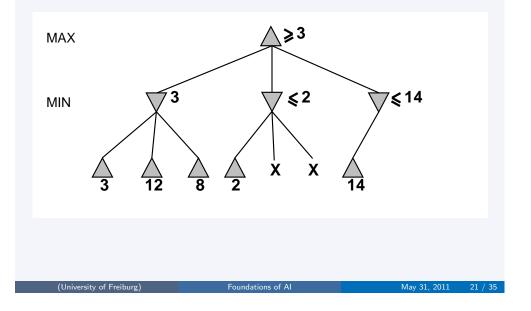
Foundations of AI

May 31, 2011 18 / 35

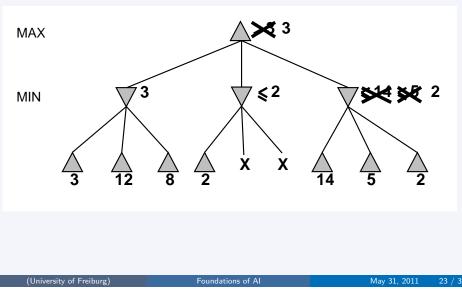
Alpha-Beta Pruning Example



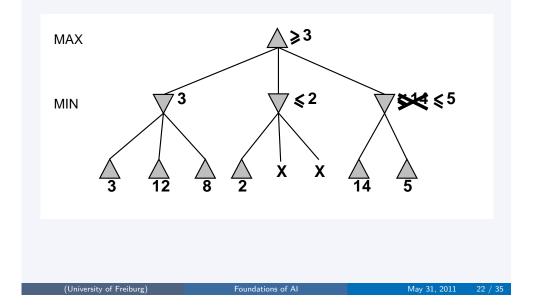
Alpha-Beta Pruning Example



Alpha-Beta Pruning Example



Alpha-Beta Pruning Example



Efficiency Gain

- The alpha-beta search cuts the largest amount off the tree when we examine the best move first.
- In the best case (always the best move first), the search expenditure is reduced to $O(b^{d/2}) \Rightarrow$ we can search twice as deep in the same amount of time.
- In the average case (randomly distributed moves), the search expenditure is reduced to $O((b/\log b)^d)$.
- For moderate b (b < 100), we roughly have $O(b^{3d/4})$.
- However, best move typically is not known. Practical case: A simple ordering heuristic brings the performance close to the best case \Rightarrow In chess, we can thus reach a depth of 6-7 moves.

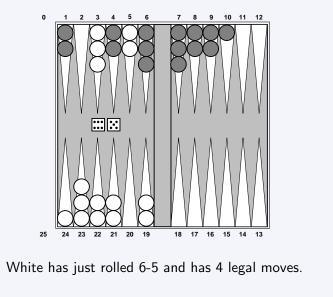
Good ordering for chess? try captures first, then threats, then forward moves, then backward moves

23 / 35

(University of Freiburg)

Foundations of AI

Games that Include an Element of Chance



Foundations of AI

Calculation of the Expected Value

Utility function for chance nodes C over MAX:

 d_i : possible dice rolls

(University of Freiburg

 $P(d_i)$: probability of obtaining that roll

 $S(C, d_i)$: attainable positions from C with roll d_i

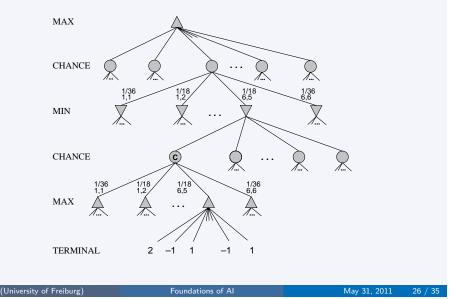
UTILITY(s): Evaluation of s

$$\mathsf{EXPECTIMAX}(C) = \sum_{i} P(d_i) \max_{s \in S(C, d_i)} (\mathsf{UTILITY}(s))$$

 $\label{eq:expectimin} Expectimin \ \mbox{likewise}$

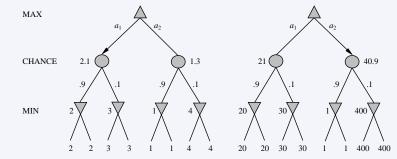
Game Tree for Backgammon

In addition to MIN- and MAX nodes, we need chance nodes (for the dice).



Problems

• Order-preserving transformations on evaluation values change the best move:



- Search costs increase: Instead of $O(b^d)$, we get $O((b \times n)^d)$, where n is the number of possible dice outcomes.
- \rightarrow In Backgammon (n = 21, b = 20, can be 4000) the maximum for d is 2.

May 31, 2011

25 / 35

Foundations of AI

Card Games

- Recently card games such as bridge and poker have been addressed as well
- One approach: simulate play with open cards and then average over all possible plays (or make a Monte Carlo simulation) using minimax (perhaps modified)
- Pick the move with the best expected result (usually all moves will lead to a loss, but some give better results)
 - Averaging over clairvoyancy
- Although "incorrect", appears to give reasonable results

(University of Freiburg)

Foundations of Al

Chess (1)

Chess as "Drosophila" of Al research.

- A limited number of rules produces an unlimited number of courses of play. In a game of 40 moves, there are 1.5×10^{128} possible courses of play.
- Victory comes through logic, intuition, creativity, and previous knowledge.
- Only special chess intelligence, no "general knowledge"

State of the Art

Checkers, **draughts** (by international rules): A program called *CHINOOK* is the official world champion in man-computer competition (acknowledges by ACF and EDA) and the highest-rated player:

CHINOOK: 2712 Ron King: 2632 Asa Long: 2631 Don Lafferty: 2625

Backgammon: The *BKG* program defeated the official world champion in 1980. A newer program TD-Gammon is among the top 3 players.

Othello: Very good, even on normal computers. In 1997, the *Logistello* program defeated the human world champion.

Go: The best programs (Zen, Mogo, Crazystone) using Monte Carlo techniques (UCT) are rated as good as strong amateurs (1kyu/1dan) on the Internet Go servers. However, its usually easy to adapt to the weaknesses of these programs.

(University of Freiburg)

Foundations of AI

May 31, 2011 30 / 39

Chess (2)

In 1997, world chess master G. Kasparow was beaten by a computer in a match of 6 games.

Deep Blue (IBM Thomas J. Watson Research Center)

- Special hardware (32 processors with 8 chips, 2 Mi. calculations per second)
- Heuristic search
- Case-based reasoning and learning techniques
 - 1996 Knowledge based on 600,000 chess games
 - 1997 Knowledge based on 2 million chess games
 - Training through grand masters
- Duel between the "machine-like human Kasparow vs. the human machine Deep Blue."

May 31, 2011

29 / 3

Chess (3)

Nowadays, ordinary PC hardware is enough ...

Name	Strength (ELO)
Rybka 2.3.1	2962
G. Kasperow	2828
V. Anand	2758
A. Karpow	2710
Deep Blue	2680

But note that the machine ELO points are not strictly comparable to human ELO points ...

The Reasons for Success ...

• Alpha-Beta-Search

(University of Freiburg)

- ... with dynamic decision-making for uncertain positions
- Good (but usually simple) evaluation functions
- Large databases of opening moves
- Very large game termination databases (for checkers, all 10-piece situations)

Foundations of AI

May 31, 2011

34 / 3

- For Go, Monte-Carlo techniques proved to be successful!
- And very fast and parallel processors!

(University of Freiburg)

Foundations of AI

May 31, 2011 33 / 35

Summary

- A game can be defined by the initial state, the operators (legal moves), a terminal test and a utility function (outcome of the game).
- In two-player board games, the minimax algorithm can determine the best move by enumerating the entire game tree.
- The alpha-beta algorithm produces the same result but is more efficient because it prunes away irrelevant branches.
- Usually, it is not feasible to construct the complete game tree, so the utility of some states must be determined by an evaluation function.
- Games of chance can be handled by an extension of the alpha-beta algorithm.