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Planning

Given a logical description of the initial situation,

a logical description of the goal conditions, and

a logical description of a set of possible actions,

→ find a sequence of actions (a plan) that brings us from the initial
situation to a situation in which the goal conditions hold.
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Planning vs. Problem-Solving

Basic difference: Explicit, logic-based representation

States/Situations: Through descriptions of the world by logical formulae
vs. data structures
→ The agent can explicitly think about it and communicate.

Goal conditions as logical formulae vs. goal test (black box)
→ The agent can also reflect on its goals.

Operators: Axioms or transformation on formulae vs. modification of
data structures by programs
→ The agent can gain information about the effects of actions by
inspecting the operators.
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Planning vs. Automatic Programming

Difference between planning and automatic programming (generating
programs):

In planning, one uses a logic-based description of the environment.

Plans are usually only linear programs (no control structures).
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Planning as Logical Inference (1)

Planning can be elegantly formalized with the help of the situation
calculus.

Initial state:
At(Home, s0 ) ∧ ¬Have(Milk , s0 ) ∧ ¬Have(Banana, s0 ) ∧ ¬Have(Drill , s0 )

Operators (successor-state axioms):
∀a, s Have(Milk ,Do(a, s)) ⇐⇒
{a = Buy(Milk) ∧ Poss(Buy(Milk), s) ∨Have(Milk , s) ∧ a 6= ¬Drop(Milk)}

Goal conditions (query):
∃s At(Home, s) ∧Have(Milk , s) ∧Have(Banana, s) ∧Have(Drill , s)

When the initial state, all prerequisites and all successor-state axioms are
given, the constructive proof of the existential query delivers a plan that
does what is desired.
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Planning as Logical Inference (2)

The variable bindings for s could be as follows:
Do(Go(Home),Do(Buy(Drill),Do(Go(Hardware store),
Do(Buy(Banana),Do(Buy(Milk),Do(Go(Supermarket), s0 ))))))

I.e., the plan (term) would be
〈Go(Supermarket),Buy(Milk), . . .〉

However, the following plan is also correct:
〈Go(Supermarket),Buy(Milk),Drop(Milk),Buy(Milk), . . .〉

In general, planning by theorem proving is very inefficient.

Alternative: Specialized inference system for a limited representation

→ Planning algorithm
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The STRIPS Formalism

STRIPS: STanford Research Institute Problem Solver (early 70s)

The system is obsolete, but the formalism is still used. Usually, a simplified
version is used:

World state (including initial state): Set of ground atoms (called fluents),
no function symbols except for constants, interpreted under closed world
assumption (CWA). Sometimes also standard interpretation, i.e., negative
facts must be explicitly given

Goal conditions: Set of ground atoms

Note: No explicit state variables as in sitation calculus. Only the current
world state is accessible.
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STRIPS Operators

Operators are triples, consisting of

Action Description: Function name with parameters (as in situation
calculus)

Preconditions: Conjunction of positive literals; must be true before the
operator can be applied (after variables are instantiated)

Effects: Conjunction of positive and negative literals; positive literals are
added (ADD list), negative literals deleted (DEL list) (no frame problem!).

Op( Action: Go(here, there),
Precond: At(here), Path(here, there),
Effect: At(there), ¬At(here) )
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Actions and Executions

An action is an operator, where all variables have been instantiated:

Op( Action: Go(Home,Supermarket),
Precond: At(Home), Path(Home,Supermarket),
Effect: At(Supermarket), ¬At(Home) )

An action can be executed in a state, if its precondition is satisfied. It
will then bring about its effects.
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Linear Plans

A sequence of actions is a plan

For a given initial state I and goal conditions G, such a plan P can be
successfully executed in I iff there exists a sequence of states
s0, s1, . . . , sn such that

- the i-th action in P can be executed in si−1 and results in si
- s0 = I and sn satisfies G

P is called a solution to the planning problem specified by the
operators, I and G
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Searching in the State Space

We can now search
through the state
space (the set of all
states formed by truth
assignments to
fluents) – and in this
way reduce planning
to searching.

We can search
forward (progression
planning):

Or alternatively, we can start at the goal and work backwards (regression
planning).
Possible since the operators provide enough information
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Searching in the Plan Space

Instead of searching in the state space, we can search in the space of all
plans.

The initial state is a partial plan containing only start and goal states:

The goal state is a complete plan that solves the given problem:

Operators in the plan space:

Refinement operators make the plan more complete (more steps etc.)

Modification operators modify the plan (in the following, we use only
refinement operators)
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Plan = Sequence of Actions?

Often, however, it is neither meaningful nor possible to commit to a
specific order early-on (put on socks and shoes).

→ Non-linear or partially-ordered plans (least-commitment planning)
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Representation of Non-linear Plans

A plan step = STRIPS operator (or action in the final plan)

A plan consists of

A set of plan steps with partial ordering (<), where Si < Sj implies Si

must be executed before Sj .

A set of variable assignments x = t, where x is a variable and t is a
constant or a variable.

A set of causal relationships Si → Sj means “Si produces the
precondition c for Sj” (implies Si < Sj).

Solutions to planning problems must be complete and consistent.
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Completeness and Consistency

Complete Plan:

Every precondition of a step is fulfilled:

∀Sj ∀c ∈ Precond(Sj):
∃Si with Si < Sj and c ∈ Effects(Si) and

for every linearization of the plan:
∀Sk with Si < Sk < Sj , ¬c 6∈ Effect(Sk).

Consistent Plan:

if Si < Sj , then Sj 6< Si and if x = A, then x 6= B for distinct A and B
for a variable x. (unique name assumption = UNA)

A complete, consistent plan is called a solution to a planning problem
(all linearizations are executable linear plans)
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Example

Actions:
Op(
Action: Go(here, there),
Precond: At(here) ∧ Path(here, there),
Effect: At(there) ∧ ¬At(here) )

Op(
Action: Buy(store, x),
Precond: At(store) ∧ Sells(store, x),
Effect: Have(x) )

Note: there, here, x, store are variables.

Note: In figures, we may just write Buy(Banana) instead of
Buy(SM ,Banana)
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Plan Refinement (1)

Regression Planning:
Fulfils the Have predicates:

. . . after instantiation of the
variables:

Thin arrow = <, thick arrow = causal relationship + <
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Plan Refinement (2)

Shop at the right store . . .

(University of Freiburg) Foundations of AI August 2, 2011 19 / 54

Plan Refinement (3)

First, you have to go there . . .

Note: So far no searching, only simple backward chaining.

Now: Conflict! If we have done Go(HWS ), we are no longer At(Home).
Likewise for Go(SM ).

(University of Freiburg) Foundations of AI August 2, 2011 20 / 54



Protection of Causal Links

(a) Conflict: S3 threatens the causal relationship between S1 and S2.

Conflict solutions:
(b) Demotion: Place the threatening step before the causal relationship.
(c) Promotion: Place the threatening step after the causal relationship.
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A Different Plan Refinement . . .

We cannot resolve the conflict by “protection”.
→ It was a mistake to choose to refine the plan.

Alternative: When instantiating At(x) in Go(SM ), choose x = HWS
(with causal relationship)
Note: This threatens the purchase of the drill → promotion of
Go(SM ).
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The Complete Solution
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The POP Algorithm
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Properties of the POP Algorithm

Correctness: Every result of the POP algorithm is a complete, correct
plan.

Completeness: If breadth-first-search is used, the algorithm finds a
solution, given one exists.

Systematicity: Two distinct partial plans do not have the same total
ordered plans as a refinement provided the partial plans are not refinements
of one another (and totally ordered plans contain causal relationships).

Problems: Informed choices are difficult to make & data structure is
expensive

→ Instantiation of variables is not addressed.
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New Approaches

Since 1995, a number of new algorithmic approaches have been
developed, which are much faster than the POP algorithm:

- Planning based on planning graphs
- Satisfiability based planning
- BDD-based approaches (good for multi-state problems)
- Heuristic-search based planning

Note: all approaches work on propositional representations, i.e., all
operators are already instantiated!
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Planning Graphs

Parallel execution of actions possible

Assumption: Only positive preconditions

Describe possible developments in a layered graph (fact level/action
level)

- links from (positive) facts to preconditions
- positive effects generate (positive) facts
- negative effects are used to mark conflicts

Extract plan by choosing only non-conflicting parts of graph
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Generating a Planning Graph

Start with initial fact level
0.

Add all applicable actions

In order to propagate
unchanged property p, use
special action noopp

Generate yumi all positive
effects on next fact level

Mark conflicts (between
actions that cannot be
executed in parallel)

Expand planning graph as
long as not all atoms in
fact level
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Extract a Plan

Start at last fact level with
goal facts

Select minimal set of
non-conflicting actions
generating the goals

Use preconditions of these
actions as goals on next
lower level

Backtrack if no
non-conflicting choice is
possible
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Conflict Information

Two actions interfere (cannot be executed in parallel):

- one action deletes or asserts the precondition of the other action
- they have opposite effects on one atomic fact

They are marked as conflicting

- and this information is propagated to prune the search early on
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Mutex Pairs: Mutually exclusive action or fact pairs

No pair of facts is mutex at fact level 0

A pair of facts is mutex at fact level i > 0 if all ways of making them
true involve actions that are mutex at the action level i− 1

A pair of actions is mutex at action level i if

- they interfere or
- one precondition of one action is mutex to a precondition of the other action

at fact level i− 1

→ Mutex pairs cannot be true/executed at the same time

→ Note that we do not find all pairs that cannot be true/executed at the
same time, but only the easy to spot pairs with the procedure sketched
above
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Planning Graphs: General Method

Expand planning graph until all goal atoms are in fact level and they are
not mutex

If not possible, terminate with failure

Iterate:

- Try to extract plan and terminate with plan if successful
- Expand by another action and fact level

Termination for unsolvable planning problems can be guaranteed but is
complex
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Properties of the Planning Graph Approach

Finds an optimal solution (for parallel plans)

Terminates on unsolvable planning instances

Is much faster than POP planning

Has problems with symmetries:

- Example: Transport n objects from room A to room B using one
gripper

- If shortest plan has k steps, it proves that there is no k − 1 step plans
(iterating over all permutations of k − 1 objects!)
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Planning as Satisfiability

Based on planning graphs of depth k, one can generate a set of
propositional CNF formulae

such that each model of these formulae correspond to a k-step plan

very similar to modeling a non-det. TM using CNFs in the proof of
NP-hardness of propositional satisfiability!

basically, one performs a different kind of search in the planning graph
(middle out instead of regression search)

can be considerable faster, sometimes . . .
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Heuristic Search Planning

Forward state-space search is often considered as too inefficient because
of the high branching factor

Why not use a heuristic estimator to guide the search?

Could that be automatically derived from the representation of the
planning instance?

→ Yes, since the actions are not “black boxes” as in search!
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Ignoring Negative Effects

Ignore all negative effects (assuming again we have only positive
preconditions)

- monotone planning

Example for the buyer’s domain:

- Only Go and Drop have negative effects (perhaps also Buy)

- Minimal length plan: 〈Go(HWS ),Buy(Drill),
Go(SM ),Buy(Bananas),Buy(Milk),Go(Home)〉

- Ignoring negative effects: 〈Go(HWS ),Buy(Drill),
Go(SM ),Buy(Bananas),Buy(Milk)〉

Usually plans with simplified ops. are shorter
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Monotone Planning

Monotone planning is easy, i.e., can be solved in polynomial time:
- While we have not made all goal atoms true:

Pick any action that
- is applicable and
- has not been applied yet
and apply it
If there is no such action, return failure
otherwise continue

Planning time and plan length bounded by number of actions times
number of facts
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Monotone Optimal Planning

Finding the shortest plan is what we need to get an admissible heuristic,
though!

This is NP-hard, even if there are no preconditions!

→ Reason: Minimum Set Cover, which is NP-complete, can be reduced to
this problem
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Minimum Set Cover

Given: A set S, a collection of subsets C = {C1, . . . , Cn}, Ci ⊆ S, and
a natural number k.

Question: Does there exist a subset of C of size k covering S?

→ Problem is NP-complete

→ and obviously a special case of the monotone planning optimization
problem
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Simplifying it Further . . .

Since the monotone planning heuristic is computationally too expensive,
simplify it further:

compute heuristic distance for each atom (recursively) by assuming
independence of sub-goals

solve the problem with any planner (i.e. the planning graph approach)
and use this as an approximative solution

→ both approaches may over-estimate, i.e., it is not an admissible heuristic
any longer
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The Fast-Forward (FF) System

Heuristic: Solve the monotone planning problem resulting from the
relaxation using a planning graph approach

Search: Hill-climbing extended by breadth-first search on plateaus

Pruning: Only those successors are considered that are part of a relaxed
solution

Fall-back strategy: complete best-first search
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Relative Performance of FF

FF performs very well on the planning benchmarks that are used for
planning competitions (IPC = International Planning Competition)

Examples:

- Blocks world
- Logistics
- Freecell

Meanwhile refined and also new planners such as FDD
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Example: Freecell
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Freecell: Performance

CPU time Solution size
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One Possible Explanation . . .

Search space topology

Look for search space properties such as

- local minima
- size of plateaus
- dead ends (detected & undetected)

Estimate by

- exploring small instances
- sampling large instance

Try to prove conjectures found this way

→ Goes some way in understanding problem structure
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Outlook

More expressive action languages

More expressive domains: numerical values / time

Non-classical planning: Dropping the single-state assumption

Multi-agent planning
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Extensions: More Powerful Action Language

Conditional actions

- Often the effects are dependent on the context the action is executed
in

- Example: press accelerator pedal

If in “forward gear”: car goes forward
If in “neutral gear”: car does nothing
If in “reverse gear”: car goes backward

More powerful conditions:

- General propositional connectors
- First-order formulas (over finite domains)
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Extensions: Domain Modelling

Considered so far: fluents that can be true or false

Often needed: numerical values

- Resource consumption
- Profit
- Cost-optimal planning
→ Leads easily to undecidability

Special case of resource: time

- Parallel execution of actions with duration
- Needs refined semantics (when do effects occur etc.)
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Non-classical Planning

Classical planning assumes:

- Complete knowledge about the initial state
- Deterministic effects
- No exogenous actions
→ Single state after each action execution

Non-classical planning:

- Drop single-state assumption
- Sensing actions
→ Conditional planning

- Perhaps limited observability (none, partial, full)
- No observability: Conformant planning (as in the vacuum cleaner

example)
→ Computational complexity of non-classical planning is much higher

(because it is a multi-state problem)
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Planning and Execution

Realistic environments (aka “the real world”)

- dynamically changing due to other agents
- only partially observable
→ many possible world states

Conditional planning:

- Very costly
- Plan for every possible world state in advance
- Most of the conditional plan becomes obsolete as soon as a

perception is made
- Often no (good) model of contingencies

Alternative:

- Planning, execution, monitoring, replanning, . . .
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Monitoring and Replanning

Things that may happen during execution
- Everything works like a charm!
- Failures
- Unexpected observations
- Unexpected events (other agents or nature)

Monitoring
- Action monitoring: check if

preconditions are satisfied
intended effects occurred

- Plan monitoring: check if
whole plan is still executable in current state and
will reach goal state

- Serendipity

Replanning: several variants
- Start planning again from scratch → find optimal plan (again)
- Determine where plan will fail and replan only from there → maximize plan

stability
- Plan repair by local search → maximize some other similarity metric
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Continual Planning

Continual Planning:
- Suspend planning

for partial plan execution
for sensing → for resolving contingencies

- Then plan again in light of new knowledge.

How do agents decide when to switch between planning and execution?

- Model sensing actions
- Reason about how they can reduce uncertainty
→ Active knowledge gathering
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Multi-Agent Planning

Planning for multiple agents

- Concurrent execution
- Execution synchronisation

Planning by multiple agents

- Distributed planning

Various degrees of cooperativity → game theory

Distributed Continual Planning

- Agents continually interleave planning, acting, sensing and interacting
- Agents negotiate common goals and plans over time
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Summary

Planning differs from problem-solving in that the representation is
more flexible

We can search in the plan space instead of the state space

The POP algorithm realizes non-linear planning and is complete and
correct, but it is difficult to design good heuristics

Recent approaches to planning have boosted the efficiency of planning
methods significantly

Heuristic search planning appears to be one of the fastest
(non-optimal) methods

Non-classical planning makes more realistic assumptions, but the
planning problem becomes much more complex

Continual planning can be used to address the expressivity/efficiency
tradeoff

Multi-agent planning is important if groups of cooperating or
competing agents strive to achieve goals
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