Basic Probability Rules

Cyrill Stachniss

1 Basic Axioms

$$
\begin{gather*}
0 \leq p(x) \leq 1 \tag{1}\\
p(\text { true })=1 \text { and } p(\text { false })=0 \tag{2}\\
p(x \vee y)=p(x)+p(y)-p(x \wedge y) \tag{3}
\end{gather*}
$$

2 Negatived Probability

$$
\begin{equation*}
p(x)=1-p(\neg x) \tag{4}
\end{equation*}
$$

3 Product Rule

The following equation is called the product rule

$$
\begin{align*}
p(x, y) & =p(x \mid y) \cdot p(y) \tag{5}\\
& =p(y \mid x) \cdot p(x) . \tag{6}
\end{align*}
$$

4 Independence

If x and y are independent, we have

$$
\begin{equation*}
p(x, y)=p(x) \cdot p(y) . \tag{7}
\end{equation*}
$$

5 Bayes' Rule

The Bayes' rule, which is frequently used in this thesis, is given by

$$
\begin{equation*}
p(x \mid y)=\frac{p(y \mid x) \cdot p(x)}{p(y)} . \tag{8}
\end{equation*}
$$

The denominator is a normalizing constant that ensures that the posterior of the left hand side adds up to 1 over all possible values. Thus, we often write

$$
\begin{equation*}
p(x \mid y)=\eta \cdot p(y \mid x) \cdot p(x) . \tag{9}
\end{equation*}
$$

In case the background knowledge e is given, Bayes' rule turns into

$$
\begin{equation*}
p(x \mid y, e)=\frac{p(y \mid x, e) \cdot p(x \mid e)}{p(y \mid e)} . \tag{10}
\end{equation*}
$$

6 Marginalization

The marginalization rule is the following equation

$$
\begin{equation*}
p(x)=\int_{y} p(x, y) d y \tag{11}
\end{equation*}
$$

In the discrete case, the integral turns into a sum

$$
\begin{equation*}
p(x)=\sum_{y} p(x, y) . \tag{12}
\end{equation*}
$$

7 Law of Total Probability

The law of total probability is a variant of the marginalization rule, which can be derived using the product rule

$$
\begin{equation*}
p(x)=\int_{y} p(x \mid y) \cdot p(y) d y \tag{13}
\end{equation*}
$$

and the corresponding sum for the discrete case

$$
\begin{equation*}
p(x)=\sum_{y} p(x \mid y) \cdot p(y) . \tag{14}
\end{equation*}
$$

8 Markov Assumption

The Markov assumption (also called Markov property) characterizes the fact that a variable x_{t} depends only on its direct predecessor state x_{t-1} and not on $x_{t^{\prime}}$ with $t^{\prime}<t-1$

$$
\begin{equation*}
p\left(x_{t} \mid x_{1: t-1}\right)=p\left(x_{t} \mid x_{t-1}\right) . \tag{15}
\end{equation*}
$$

