Introduction to Mobile Robotics

Proximity Sensors

Wolfram Burgard, Cyrill Stachniss,
Maren Bennewitz, Kai Arras

Sensors of Wheeled Robots

Perception of the environment

Active:

- Ultrasound
- Laser range finder
- Infrared

Passive:

- Cameras
- Tactiles

Tactile Sensors

Measure contact with objects

Touch sensor

Bumper sensor

Ultrasound Sensors

- Emit an ultrasound signal
- Wait until they receive the echo
- Time of flight sensor

Time of Flight Sensors

v : speed of the signal
t : time elapsed between broadcast of signal and reception of the echo.

Properties of Ultrasounds

- Signal profile [Polaroid]

Sources of Error

- Opening angle
- Crosstalk
- Specular reflection

Typical Ultrasound Scan

Parallel Operation

- Given a 15 degrees opening angle, 24 sensors are needed to cover the whole 360 degrees area around the robot.
- Let the maximum range we are interested in be 10 m .
- The time of flight then is $2 * 10 / 330 \mathrm{~s}=0.06 \mathrm{~s}$
- A complete scan requires 1.45 s
- To allow frequent updates (necessary for high speed) the sensors have to be fired in parallel.
- This increases the risk of crosstalk

Laser Range Scanner

Properties

- High precision
- Wide field of view
- Approved security for collision detection

Robots Equipped with Laser Scanners

Typical Scans

