Introduction to Mobile Robotics

Proximity Sensors

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Sensors of Wheeled Robots

Perception of the environment

Measure contact with objects

Touch sensor

Bumper sensor

Ultrasound Sensors

- Emit an ultrasound signal
- Wait until they receive the echo
- Time of flight sensor

Time of Flight Sensors

 $d = v \times t / 2$

- *v*: speed of the signal
- t: time elapsed between broadcast of signal and reception of the echo.

Properties of Ultrasounds

Signal profile [Polaroid]

Sources of Error

- Opening angle
- Crosstalk
- Specular reflection

Typical Ultrasound Scan

Parallel Operation

- Given a 15 degrees opening angle, 24 sensors are needed to cover the whole 360 degrees area around the robot.
- Let the maximum range we are interested in be 10m.
- The time of flight then is 2*10/330 = 0.06 = 0.06
- A complete scan requires 1.45 s
- To allow frequent updates (necessary for high speed) the sensors have to be fired in parallel.
- This increases the risk of crosstalk

Laser Range Scanner

Properties

- High precision
- Wide field of view
- Approved security for collision detection

Robots Equipped with Laser Scanners

Typical Scans

