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Robot Motion

= Robot motion is inherently uncertain.
= How can we model this uncertainty?




Dynamic Bayesian Network for
Controls, States, and Sensations




Probabilistic Motion Models

= To implement the Bayes Filter, we need the
transition model p(xjx’, u).

= The term p(xjx’, u) specifies a posterior
probability, that action u carries the robot
from x~ to x.

= In this section we will specify, how

p(xjx’, u) can be modeled based on the
motion equations.



Coordinate Systems

In general the configuration of a robot can be
described by six parameters.

Three-dimensional Cartesian coordinates plus
three Euler angles pitch, roll, and tilt.

Throughout this section, we consider robots
operating on a planar surface.

A

The state space of such
systems is three- glooooo o
dimensional (x,y,0).

<::f,0 . 6 =



Typical Motion Models

In practice, one often finds two types of
motion models:

= Odometry-based
= Velocity-based (dead reckoning)

Odometry-based models are used when
systems are equipped with wheel encoders.

Velocity-based models have to be applied
when no wheel encoders are given.

They calculate the new pose based on the
velocities and the time elapsed.



Example Wheel Encoders

These modules require
+5V and GND to power
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- ‘ ‘~. - & & 4 > A *
them, and provide a O to A o LEF T 4 LLEFTS]
5V output. They provi <R B
P Y pro de @uuu.%obotics ‘) auuu.%obgics O
+5V Output when they == Connection.com = Connection.com

"see" white, and a OV

output when they "see"

black. These disks are
manufactured out of high
quality laminated color
plastic to offer a very crisp
black to white transition.
This enables a wheel
encoder sensor to easily
see the transitions.

Source: http://www.active-robots.com/ v



Dead Reckoning

Derived from “deduced reckoning.”

Mathematical procedure for determining
the present location of a vehicle.

Achieved by calculating the current pose of
the vehicle based on its velocities and the

time elapsed.



Reasons for Motion Errors

= 1

ideal case different wheel
diameters

—

bump

and many more ...



Odometry Model

® Robot moves from (x,5,6)to (¥',5,6").
e Odometry information y = <(S O .0 >

rotl® “rot2? ~ trans

trans = \/( _x)z + (_'_.)_/)2
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The atan2 Function

= Extends the inverse tangent and correctly
copes with the signs of x and v.

(atan(y/x) ifz >0
. sign(y) (m —atan(|y/z|)) ifz <O
atan2(y,az) = A 0 |ffE:y:O
| sign(y) 7/2 ifx =0,y %0
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Noise Model for Odometry

= The measured motion is given by the true
motion corrupted with noise.
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Typical Distributions for
Probabilistic Motion Models

Normal distribution Triangular distribution
5 b b b
R 0if | x [> V60"
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Calculating the Probability
(zero-centered)

= For a normal distribution

1. Algorithm prob_normal_distribution(qs,5):

2 return 1 exp { 1 a2}
V2r b2 2

= For a triangular distribution

1. Algorithm prob_triangular_distribution(q,b):

1 a|
2. return max<0,— — —=
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Calculating the Posterior
Given x, X', and u

1. Algorithm motion_ model _odometry(x,x’ ,u)

20 By = (F-E) + (7

3. 5mﬂ = atan2(y'-y, x' x) 7] odometry values (u)
4, 5r0t2 =0'-0 - 5r0t1

5. By = (1) +(r'-p)}

6. émﬂ = atan2(y' y,x'-x)-6 >values of interest (x,x")
/. 5rot2 =0'-0- §r0t1

8. p, =prob(0,, — rotl’ o |0 ot1|+a 5trans)

O. P> prOb(étrans - trans’a3(5trans + 0!4(| rot1 | + | rot2 D)

10. p; =prob(d,,, - r0t29a1 |(5r0t2 | +a25trans)

11. return p; - p, - p;
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Application

= Repeated application of the sensor model for short
movements.

= Typical banana-shaped distributions obtained for
2d-projection of 3d posterior.
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Sample-based Density Representation
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Sample-based Density Representation
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How to Sample from Normal or
Triangular Distributions?

= Sampling from a normal distribution

1. Algorithm sample_normal_distribution(b):

1 12
2. return EZrcmd(—b,b)
1=1

= Sampling from a triangular distribution

1. Algorithm sample_triangular_distribution(s):

2. return ? [rand(—b,b) + rand(—b,b)]
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Normally Distributed Samples
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For Triangular Distribution
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Rejection Sampling

= Sampling from arbitrary distributions

Qv kA W=

Algorithm sample_distribution(sb):
repeat
x rand(—b,b)
y = rand(0, max{f(z) |z € (=b,b)})
until (y < f(z))
return
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Example
= Sampling from

- abs(z) ze€[-1;1]
fz) = {O otherwise
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Sample Odometry Motion Model

1. Algorithm sample_motion_model(u, x):
<§rot19 5rot2’ 5trans >7 X = <.X', y? 6>

1' érotl 5r0t1 + Sample(al | érotl | +a2 étrans)
2' trans 5trans + Sample 5trans + a4 (| 5r0t1 | + | 5r0t2 |))
3. rot2 érotZ + Sample +a2 6trans)

4. x'=x+ 5th cos(é +m

5. YV=y+ 5tmns SIn(6 +0,,,,) sample_normal_distribution
0'=0+5_ +6

rotl rot2

7. Return <x',y',t9'>



Sampling from Our Motion
Model

10 meters




Examples (Odometry-Based)




Velocity-Based Model
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Equation for the Velocity Model

Center of circle:
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Posterior Probability for
Velocity Model

1: Algorithm motion_model_velocity(z;, u;, 2 1):
). 1 (z—2")cosO+ (y —y')sind
' =3 (y —y')cos O — (x — ') sin O
., x4
3: o=ty -y
Y+ /
4: y*:%Jru(x’—x)
5: r* =)+ (y —y*)?
6: AO = atan2(y’ — y*, 2" — 2") — atan2(y — y*,x — a")
Af
7 v=—1"
v
A6
8: W= —
At
A 0=0
At
10: return prob(v — 0, a1 |v| + as|w|) - prob(w — w, as|v| + ay|w|)
- prob (¥, as|v| + ag|w|)
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Sampling from Velocity Model

1: Algorithm sample_motion_model_velocity(u;, x;_1):
2: v = v+ sample(aq |v] + as|w)|)

3: w = w + sample(as|v| + ayg|wl|)

4 v = sample(as|v| + aglw|)

5: ' =2 — Lsind + £ sin( + wAt)

6: y =y + Lcosf — ‘: cos(f + wAt)

7 0" =60 +wAt + YAt

8: return z; = (2/,y',0")"
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Examples (velocity based)




Map-Consistent Motion Model

N
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p(x|u,x') : p(x|u,x',m)

Approximation: p(x|u,x',m)=n p(x|m) p(x|u,x")



Summary

= We discussed motion models for odometry-based
and velocity-based systems

= We discussed ways to calculate the posterior
probability p(x| x’, u).

= We also described how to sample from p(x| x’, u).

= Typically the calculations are done in fixed time
intervals Az.

= In practice, the parameters of the models have to
be learned.

= We also discussed an extended motion model that
takes the map into account.
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