
1 

Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras 

Bayes Filter – Kalman Filter 

Introduction to 
Mobile Robotics 

Slides by Kai Arras and Wolfram Burgard 
Last update: May 2011 



2 

Bayes Filter Reminder 

1.   Algorithm Bayes_filter( Bel(x),d ): 
2.   η=0

3.   If d is a perceptual data item z then 
4.       For all x do 
5.    
6.    
7.       For all x do 
8.    

9.   Else if d is an action data item u then 

10.       For all x do 
11.    

12.   Return Bel’(x)       



Kalman Filter 

  Bayes filter with Gaussians 
  Developed in the late 1950's 
  Most relevant Bayes filter variant in practice 
  Applications range from economics, 

wheather forecasting, satellite navigation to 
robotics and many more. 

  The Kalman filter "algorithm" is 
a couple of matrix multiplications! 

3 



Gaussians 

-σ σ 

µ 

Univariate 

µ 

Multivariate 



Gaussians 

1D 

2D 

3D 

Video 



Properties of Gaussians 

  Univariate case 



  Multivariate case 

 (where division "–" denotes matrix inversion) 

  We stay Gaussian as long as we start with 
Gaussians and perform only linear 
transformations 

Properties of Gaussians 



8 

Discrete Kalman Filter 

Estimates the state x of a discrete-time 
controlled process that is governed by the 
linear stochastic difference equation 

with a measurement  



9 

Components of a Kalman Filter 

Matrix (nxn) that describes how the state 
evolves from t to t-1 without controls or 
noise. 

Matrix (nxl) that describes how the control ut 
changes the state from t to t-1. 

Matrix (kxn) that describes how to map the 
state xt to an observation zt. 

Random variables representing the process 
and measurement noise that are assumed to 
be independent and normally distributed 
with covariance Qt and Rt respectively. 



  Prediction 

  Correction 

Bayes Filter Reminder 



11 

Kalman Filter Updates in 1D 

prediction measurement 

correction 

It's a weighted mean! 



12 

Kalman Filter Updates in 1D 

€ 

bel(xt ) =
µt = µ t + Kt (zt −Ctµ t )
Σt = (I −KtCt )Σt

 
 
 

with    Kt = ΣtCt
T (CtΣtCt

T + Rt )
−1

How to get the blue one? 
→ Kalman correction 
step 



Kalman Filter Updates in 1D 

€ 

bel(xt ) =
µ t = Atµt−1 + Btut
Σt = AtΣt−1At

T +Qt

 
 
 

€ 

bel(xt ) =
µ t = atµt−1 + btut
σ t
2 = at

2σ t
2 +σ act,t

2

 
 
 

How to get the 
magenta one? 
→ State prediction 
step 



Kalman Filter Updates 



Linear Gaussian Systems: Initialization 

  Initial belief is normally distributed: 



  Dynamics are linear function of state and 
control plus additive noise: 

Linear Gaussian Systems: Dynamics 

€ 

p(xt | ut ,xt−1) = N xt;At xt−1 + Btut ,Qt( )

€ 

bel(xt ) = p(xt | ut ,xt−1)∫ bel(xt−1) dxt−1
⇓ ⇓

~ N xt;At xt−1 + Btut ,Qt( ) ~ N xt−1;µt−1,Σt−1( )



Linear Gaussian Systems: Dynamics 

€ 

bel(xt ) = p(xt | ut ,xt−1)∫ bel(xt−1) dxt−1
⇓ ⇓

~ N xt;At xt−1 + Btut ,Qt( ) ~ N xt−1;µt−1,Σt−1( )
⇓

bel(xt ) =η exp −
1
2
(xt − At xt−1 − Btut )

T Qt
−1(xt − At xt−1 − Btut )

 
 
 

 
 
 

∫

exp −
1
2
(xt−1 −µt−1)

T Σt−1
−1 (xt−1 −µt−1)

 
 
 

 
 
 
dxt−1

bel(xt ) =
µ t = Atµt−1 + Btut
Σt = AtΣt−1At

T +Qt

 
 
 



  Observations are linear function of state 
plus additive noise: 

Linear Gaussian Systems: Observations 

€ 

p(zt | xt ) = N zt ;Ct xt ,Rt( )

€ 

bel(xt ) = η p(zt | xt ) bel(xt )
⇓ ⇓

~ N zt;Ct xt ,Rt( ) ~ N xt ;µ t ,Σt( )



Linear Gaussian Systems: Observations 

€ 

bel(xt ) = η p(zt | xt ) bel(xt )
⇓ ⇓

~ N zt;Ct xt ,Rt( ) ~ N xt ;µ t ,Σt( )
⇓

bel(xt ) =η exp −
1
2

(zt −Ct xt )
T Rt

−1(zt −Ct xt )
 
 
 

 
 
 

exp −
1
2

(xt −µ t )
T Σ t

−1(xt −µ t )
 
 
 

 
 
 

bel(xt ) =
µt = µ t + Kt (zt −Ctµ t )
Σt = (I −KtCt )Σt

 
 
 

with    Kt = ΣtCt
T (CtΣtCt

T + Rt )
−1



Kalman Filter Algorithm  

1.   Algorithm Kalman_filter( µt-1, Σt-1, ut, zt): 

2.   Prediction: 
3.         
4.     

5.   Correction: 
6.         
7.    
8.    

9.   Return µt, Σt       

€ 

µ t = Atµt−1 + Btut

€ 

Σt = AtΣt−1At
T +Qt

€ 

Kt = ΣtCt
T (CtΣtCt

T + Rt )
−1

€ 

µt = µ t + Kt (zt −Ctµ t )

€ 

Σt = (I −KtCt )Σt



Kalman Filter Algorithm  



Kalman Filter Algorithm  

  Prediction 
  Observation 

  Matching   Correction  



23 

The Prediction-Correction-Cycle 

€ 

bel(xt ) =
µ t = Atµt−1 + Btut
Σt = AtΣt−1At

T +Qt

 
 
 

€ 

bel(xt ) =
µ t = atµt−1 + btut
σ t
2 = at

2σ t
2 +σ act,t

2

 
 
 

Prediction 



24 

The Prediction-Correction-Cycle 

€ 

bel(xt ) =
µt = µ t + Kt (zt −Ctµ t )
Σt = (I −KtCt )Σt

 
 
 

,Kt = ΣtCt
T (CtΣtCt

T + Rt )
−1

€ 

bel(xt ) =
µt = µ t + Kt (zt −µ t )
σ t

2 = (1−Kt )σ t
2

 
 
 

,  Kt =
σ t

2

σ t
2 +σ obs,t

2

Correction 



25 

The Prediction-Correction-Cycle 

€ 

bel(xt ) =
µt = µ t + Kt (zt −Ctµ t )
Σt = (I −KtCt )Σt

 
 
 

,Kt = ΣtCt
T (CtΣtCt

T + Rt )
−1

€ 

bel(xt ) =
µt = µ t + Kt (zt −µ t )
σ t

2 = (1−Kt )σ t
2

 
 
 

,  Kt =
σ t

2

σ t
2 +σ obs,t

2

€ 

bel(xt ) =
µ t = Atµt−1 + Btut
Σt = AtΣt−1At

T +Qt

 
 
 

€ 

bel(xt ) =
µ t = atµt−1 + btut
σ t
2 = at

2σ t
2 +σ act,t

2

 
 
 

Correction 

Prediction 



Kalman Filter Summary 

  Highly efficient: Polynomial in the 
measurement dimensionality k and  
state dimensionality n:  

             O(k2.376 + n2)  

  Optimal for linear Gaussian systems! 

  Most robotics systems are nonlinear! 



Nonlinear Dynamic Systems 

  Most realistic robotic problems involve 
nonlinear functions 



  Prediction: 

  Correction: 

EKF Linearization: First Order 
Taylor Series Expansion 



EKF Algorithm  

1.   Extended_Kalman_filter( µt-1, Σt-1, ut, zt): 

2.   Prediction: 
3.         
4.     

5.   Correction: 
6.         
7.    
8.    

9.   Return µt, Σt       

€ 

Σt =GtΣt−1Gt
T +Qt

€ 

Kt = ΣtHt
T (HtΣtHt

T + Rt )
−1

€ 

Σt = AtΣt−1At
T +Qt

€ 

Kt = ΣtCt
T (CtΣtCt

T + Rt )
−1



Linearity Assumption Revisited 



Non-linear Function 



EKF Linearization (1) 



EKF Linearization (2)  



EKF Linearization (3) 


