Introduction to Mobile Robotics

Bayes Filter – Kalman Filter

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Slides by Kai Arras and Wolfram Burgard Last update: May 2011

Bayes Filter Reminder

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

- 1. Algorithm **Bayes_filter**(*Bel(x),d*):
- **2.** η=0
- 3. If *d* is a perceptual data item *z* then
- 4. For all x do
- 5. $Bel'(x) = P(z \mid x)Bel(x)$

$$\theta. \qquad \eta = \eta + Bel'(x)$$

7. For all *x* do

8.
$$Bel'(x) = \eta^{-1}Bel'(x)$$

- 9. Else if *d* is an action data item *u* then
- 10. For all x do

11.
$$Bel'(x) = \int P(x | u, x') Bel(x') dx'$$

12. Return Bel'(x)

Kalman Filter

- Bayes filter with Gaussians
- Developed in the late 1950's
- Most relevant Bayes filter variant in practice
- Applications range from economics, wheather forecasting, satellite navigation to robotics and many more.
- The Kalman filter "algorithm" is a couple of matrix multiplications!

Gaussians

$$p(x) \sim N(\mu, \sigma^2):$$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

Univariate

$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}):$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

Multivariate

Gaussians

Properties of Gaussians

Univariate case

$$\left. \begin{array}{l} X \sim N(\mu, \sigma^2) \\ Y = aX + b \end{array} \right\} \quad \Rightarrow \quad Y \sim N(a\mu + b, a^2 \sigma^2)$$

$$X_{1} \sim N(\mu_{1}, \sigma_{1}^{2}) \\ X_{2} \sim N(\mu_{2}, \sigma_{2}^{2}) \} \Rightarrow p(X_{1}) \cdot p(X_{2}) \sim N\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}\mu_{1} + \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}\mu_{2}, \frac{1}{\sigma_{1}^{-2} + \sigma_{2}^{-2}}\right)$$

Properties of Gaussians

Multivariate case

$$\left. \begin{array}{c} X \sim N(\mu, \Sigma) \\ Y = AX + B \end{array} \right\} \quad \Rightarrow \quad Y \sim N(A\mu + B, A\Sigma A^T)$$

$$X_{1} \sim N(\mu_{1}, \Sigma_{1}) \\ X_{2} \sim N(\mu_{2}, \Sigma_{2}) \} \Rightarrow p(X_{1}) \cdot p(X_{2}) \sim N\left(\frac{\Sigma_{2}}{\Sigma_{1} + \Sigma_{2}}\mu_{1} + \frac{\Sigma_{1}}{\Sigma_{1} + \Sigma_{2}}\mu_{2}, \frac{1}{\Sigma_{1}^{-1} + \Sigma_{2}^{-1}}\right)$$

(where division "-" denotes matrix inversion)

 We stay Gaussian as long as we start with Gaussians and perform only linear transformations

Discrete Kalman Filter

Estimates the state *x* of a discrete-time controlled process that is governed by the linear stochastic difference equation

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

with a measurement

$$z_t = C_t x_t + \delta_t$$

Components of a Kalman Filter

A_t

Matrix (nxn) that describes how the state evolves from *t* to *t*-1 without controls or noise.

Matrix (nxl) that describes how the control u_t changes the state from t to t-1.

Matrix (kxn) that describes how to map the state x_t to an observation z_t .

 δ_t

Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance Q_t and R_t respectively.

Bayes Filter Reminder

Prediction

$$\overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

Correction

$$bel(x_t) = \eta p(z_t \mid x_t) bel(x_t)$$

Kalman Filter Updates in 1D

Kalman Filter Updates in 1D

How to get the blue one? → Kalman correction step

$$bel(x_t) = \begin{cases} \mu_t = \overline{\mu}_t + K_t(z_t - \overline{\mu}_t) \\ \sigma_t^2 = (1 - K_t)\overline{\sigma}_t^2 \end{cases} \quad \text{with} \quad K_t = \frac{\overline{\sigma}_t^2}{\overline{\sigma}_t^2 + \overline{\sigma}_{obs,t}^2} \\ bel(x_t) = \begin{cases} \mu_t = \overline{\mu}_t + K_t(z_t - C_t\overline{\mu}_t) \\ \Sigma_t = (I - K_tC_t)\overline{\Sigma}_t \end{cases} \quad \text{with} \quad K_t = \overline{\Sigma}_t C_t^T (C_t\overline{\Sigma}_t C_t^T + R_t)^{-1} \end{cases}$$

Kalman Filter Updates in 1D

How to get the magenta one? → State prediction step

Kalman Filter Updates

Linear Gaussian Systems: Initialization

Initial belief is normally distributed:

$$bel(x_0) = N(x_0; \mu_0, \Sigma_0)$$

Linear Gaussian Systems: Dynamics

 Dynamics are linear function of state and control plus additive noise:

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

$$p(x_t | u_t, x_{t-1}) = N(x_t; A_t x_{t-1} + B_t u_t, Q_t)$$

Linear Gaussian Systems: Dynamics

Linear Gaussian Systems: Observations

 Observations are linear function of state plus additive noise:

$$z_t = C_t x_t + \delta_t$$

$$p(z_t \mid x_t) = N(z_t; C_t x_t, R_t)$$

Linear Gaussian Systems: Observations

Kalman Filter Algorithm

- 1. Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2. Prediction:
- $\mathbf{3.} \qquad \overline{\boldsymbol{\mu}}_t = A_t \boldsymbol{\mu}_{t-1} + B_t \boldsymbol{u}_t$

$$\mathbf{4.} \qquad \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + Q_t$$

5. Correction:

6.
$$K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + R_t)^{-1}$$

- **7.** $\mu_t = \overline{\mu}_t + K_t(z_t C_t \overline{\mu}_t)$
- **8.** $\Sigma_t = (I K_t C_t) \overline{\Sigma}_t$
- 9. Return μ_{t} , Σ_t

Kalman Filter Algorithm

Kalman Filter Algorithm

The Prediction-Correction-Cycle

$\overline{bel}(x_t) = \begin{cases} \overline{\mu}_t = a_t \mu_{t-1} + b_t u_t \\ \overline{\sigma}_t^2 = a_t^2 \sigma_t^2 + \sigma_{act,t}^2 \end{cases}$
$\overline{bel}(x_t) = \begin{cases} \overline{\mu}_t = A_t \mu_{t-1} + B_t \mu_t \\ \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + Q_t \end{cases}$

Prediction

The Prediction-Correction-Cycle

The Prediction-Correction-Cycle

Kalman Filter Summary

 Highly efficient: Polynomial in the measurement dimensionality k and state dimensionality n:

 $O(k^{2.376} + n^2)$

- Optimal for linear Gaussian systems!
- Most robotics systems are **nonlinear**!

Nonlinear Dynamic Systems

 Most realistic robotic problems involve nonlinear functions

$$x_t = g(u_t, x_{t-1})$$

$$z_t = h(x_t)$$

EKF Linearization: First Order Taylor Series Expansion

Prediction:

 $g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$ $g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$

Correction:

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$

EKF Algorithm

- **1. Extended_Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- **Prediction:** 2. **3.** $\overline{\mu}_t = g(u_t, \mu_{t-1})$ $\longleftarrow \mu_t = A_t \mu_{t-1} + B_t u_t$ $\longleftarrow \qquad \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + Q_t$ **4.** $\overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + Q_t$ 5. Correction: **6.** $K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + R_t)^{-1}$ \leftarrow $K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + R_t)^{-1}$ 7. $\mu_t = \overline{\mu}_t + K_t(z_t - h(\overline{\mu}_t))$ \longleftarrow $\mu_t = \mu_t + K_t(z_t - C_t \mu_t)$ **8.** $\Sigma_t = (I - K_t H_t) \Sigma_t$ $\longleftarrow \Sigma_t = (I - K_t C_t) \Sigma_t$ 9. Return μ_t , Σ_t $H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}} \qquad G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}}$

Linearity Assumption Revisited

Non-linear Function

EKF Linearization (1)

EKF Linearization (2)

EKF Linearization (3)

