Introduction to
Mobile Robotics

Error Propagation

Wolfram Burgard, Cyrill Stachniss, Maren
Bennewitz, Kai Arras

Slides by Kai Arras
Last update: June 2010

UNI
I

FREIBURG



Error Propagation: Motivation

® Probabilistic robotics is
 Representation

— Propagation
* Reduction
of uncertainty

® First-order error propagation is
fundamental for:
Kalman filter (KF), landmark extraction,
KF-based localization and SLAM



Gaussian Distribution

Why is the Gaussian distribution everywhere?

The importance of the normal distribution follows
mainly from the Central Limit Theorem:

® The mean/sum of a large number of
independent RVs, each with finite mean and
variance (ergo not e.g. uniformally distributed
RVs), will be approximately normally
distributed.

® The more RVs the better the approximation.



First-Order Error Propagation

Approximating f(X) by a first-order Taylor
series expansion about the point X = u,
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First-Order Error Propagation

X,Y assumed to be Gaussian

Y =f(X)

X - System > Y

Taylor series expansion

- df
V=S + 5y (=R

Uy

Wanted: Wy s G?/ (Solution on blackboard)



First-Order Error Propagation

Y=£X, X, .., X,)

Xl L
X2 L
X3 > System > Y
XH >

Taylor series expansion

n

0
Y = f(ula Mo, ..oy un) + [a];(ul’ o, .- un):|[Xl - ul]

I =

Wanted: u, , ¢, (Solution on blackboard)



First-Order Error Propagation

Y=£X, X, .., X,)
Z=g(X, X, ... X,)

Xl |

X2 > - Y
X3 > System

; ; > 7
XII >

Wanted: Gy,

(Exercise)



First-Order Error Propagation

Putting things together...
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— “Is there a compact form?...”

with o = 2(%{)2034.22




Jacobian Matrix

It's a non-square matrix n X m in general

f1(x)

* Suppose you have a vector-valued function f(x) = [ 12(x) ]
2

Let the gradient operator be the vector of (first-order)
partial derivatives

T
sz[a?cl 8?:2 %}

* Then, the Jacobian matrix is defined as
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Jacobian Matrix

* It's the orientation of the tangent plane to the vector-
valued function at a given point

* Generalizes the gradient of a scalar valued function

* Heavily used for first-order error propagation...
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First-Order Error Propagation

Putting things together...
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First-Order Error Propagation

...Yes! Given

® Input covariance matrix C,
® Jacobian matrix F

the Error Propagation Law

Cy = FXCXFXT

computes the output covariance matrix C,
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First-Order Error Propagation

Alternative Derivation in Matrix Notation

pe = E(z)
= FE(Au+b)
= AFE(u)+b
= Apy +b

. = E((z— E(z))(z — E(z))")
— E((Au+b— AE(u) — b)(Au+b— AE(u) — b)T)
= E((A(u— BE(u))(A(u — E(u)))T)
= E((A(v — E(u)))((u — E(u))" A™))
= AE((u— E(u))(u — E(u))T)AT
= Ay, AT
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Example: Line Extraction

Wanted: Parameter Covariance Matrix

oo G up oo 0 ... 0
Cur =
2 2
_GAR GR_ CX: 0 O-pz ... 0
Simplified sensor model: 0 0 ..o
2 : - "
all oy = 0, independence
r[m] A
T

the model space

Result: Gaussians in @ %




Other Error Prop. Techniques

e Second-Order Error Propagation

Rarely used (complex expressions)

e Monte-Carlo

Non-parametric
representation
of uncertainties
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4. Normalization
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