Introduction to Mobile Robotics

Bayes Filter – Particle Filter and Monte Carlo Localization

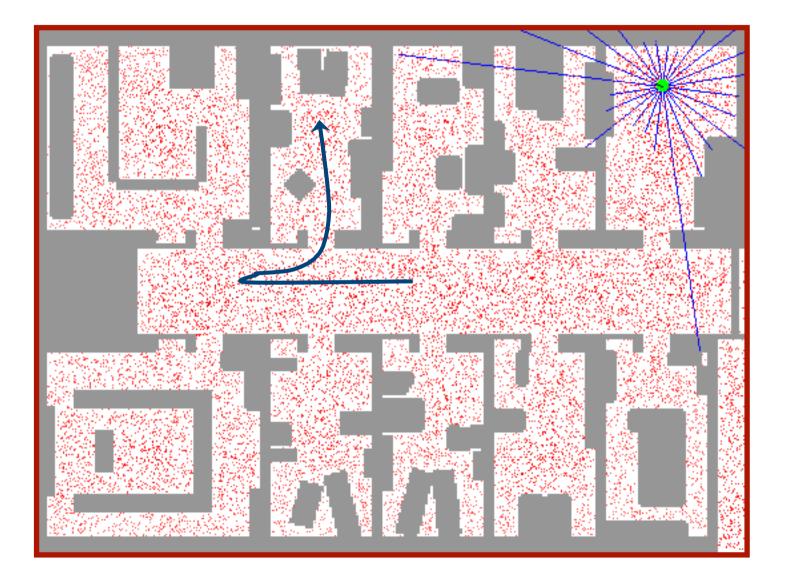
Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Motivation

- Recall: Discrete filter
 - Discretize the continuous state space
 - High memory complexity
 - Fixed resolution (does not adapt to the belief)
- Particle filters are a way to efficiently represent non-Gaussian distribution
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Sample-based Localization (sonar)



Mathematical Description

Set of weighted samples

$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$

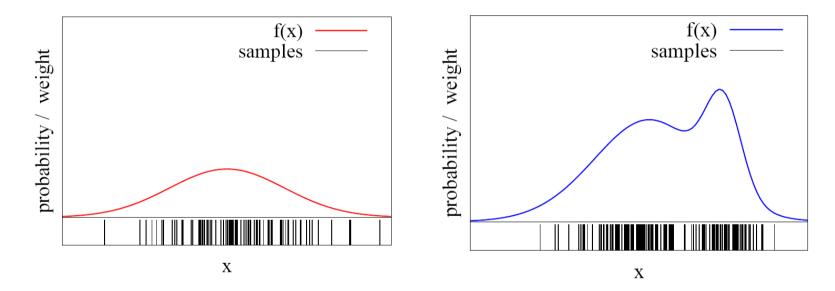
State hypothesis Importance weight

The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s^{[i]}}(x)$$

Function Approximation

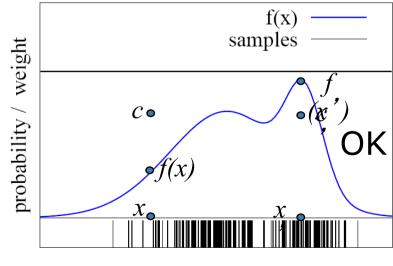
Particle sets can be used to approximate functions



- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples form a function/distribution?

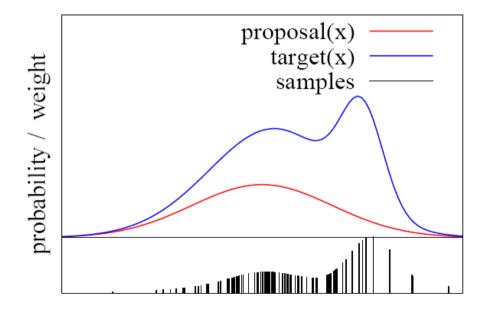
Rejection Sampling

- Let us assume that f(x)<1 for all x</p>
- Sample *x* from a uniform distribution
- Sample c from [0,1]
- if f(x) > c keep the sample otherwise reject the sampe



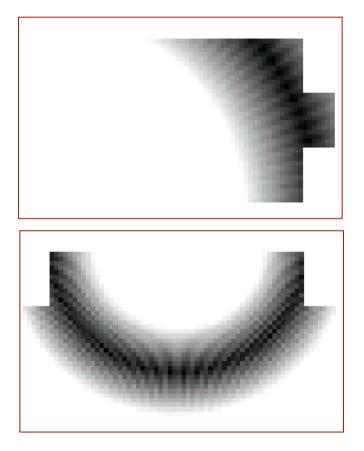
Importance Sampling Principle

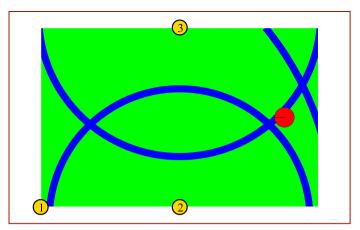
- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- w = f/g
- *f* is often called target
- g is often called proposal
- Pre-condition: $f(x) > 0 \rightarrow g(x) > 0$

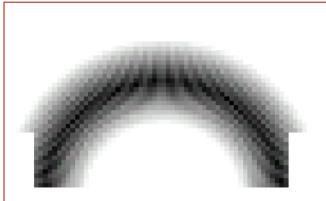


Importance Sampling with Resampling: Landmark Detection Example

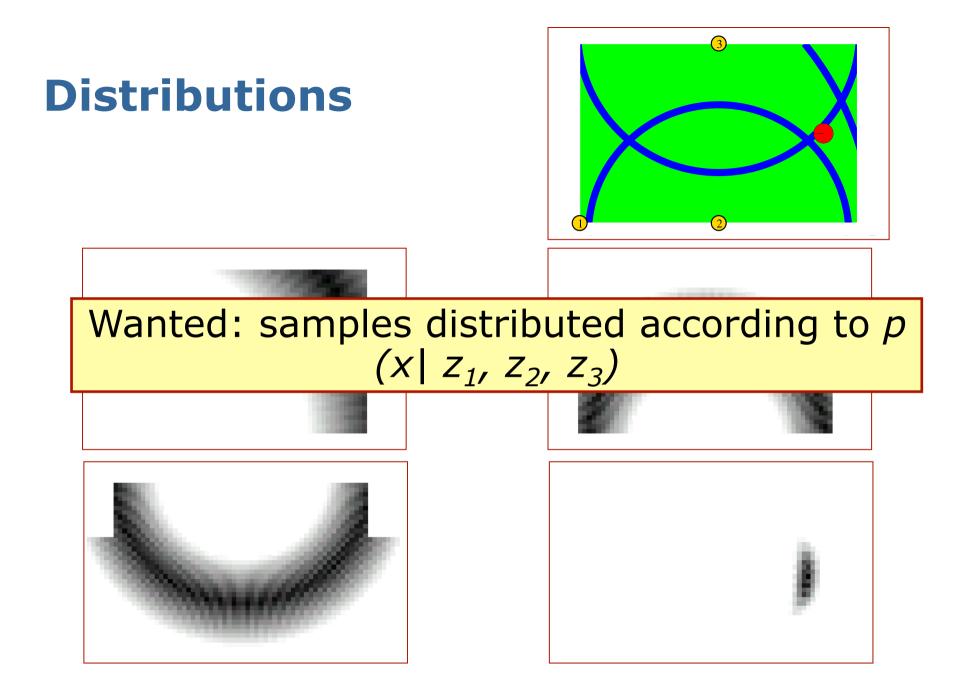
Distributions





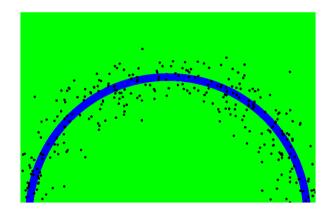


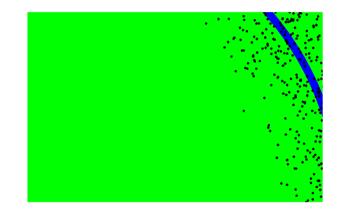


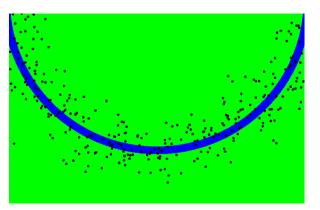


This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.







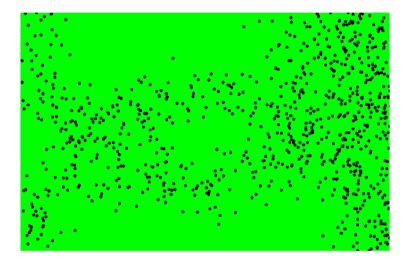
Importance Sampling

Target distribution f :
$$p(x | z_1, z_2, ..., z_n) = \frac{\prod_k p(z_k | x) p(x)}{p(z_1, z_2, ..., z_n)}$$

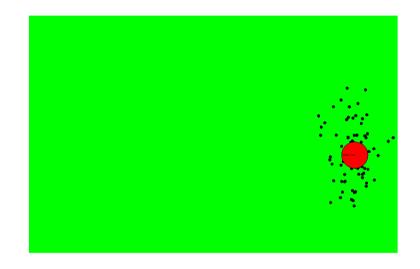
Sampling distribution
$$g: p(x | z_l) = \frac{p(z_l | x)p(x)}{p(z_l)}$$

Importance weights w:
$$\frac{f}{g} = \frac{p(x \mid z_1, z_2, ..., z_n)}{p(x \mid z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k \mid x)}{p(z_1, z_2, ..., z_n)}$$

Importance Sampling with Resampling

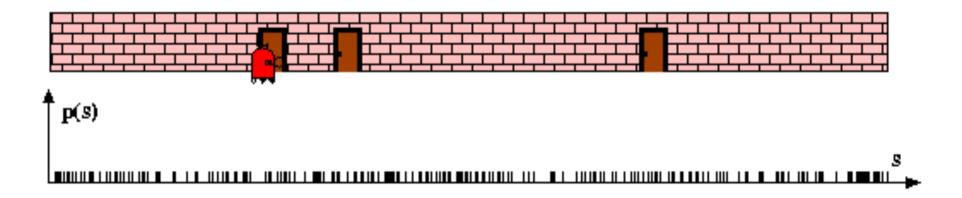


Weighted samples

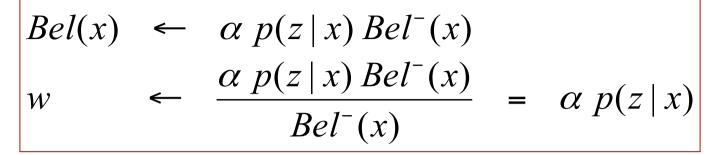


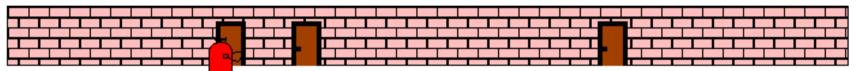
After resampling

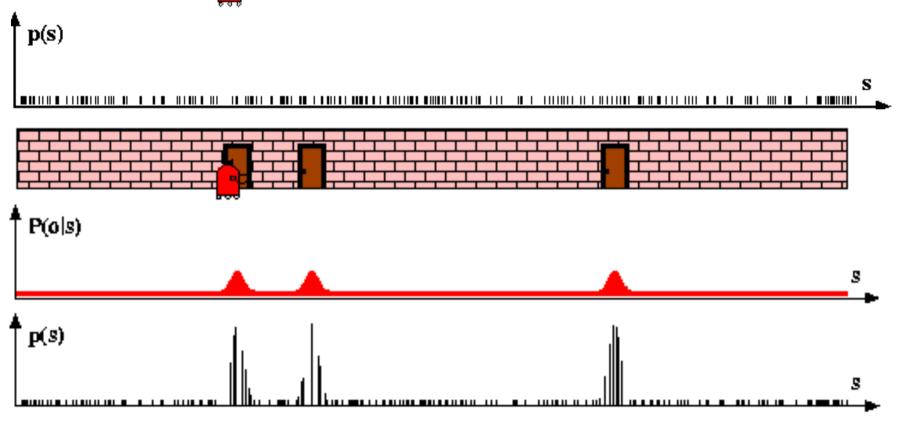
Particle Filters

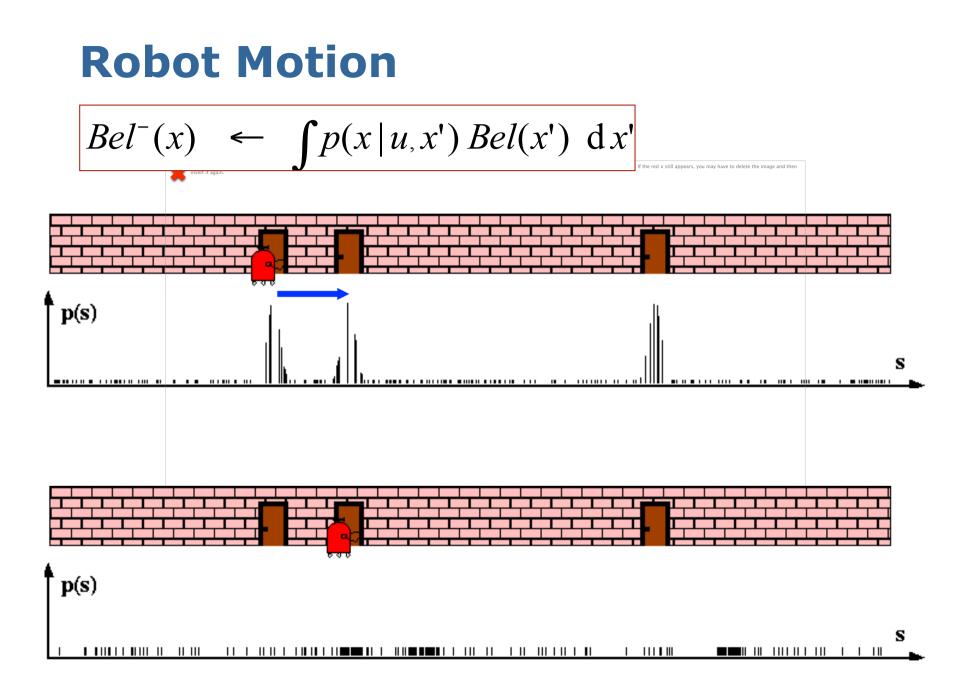


Sensor Information: Importance Sampling

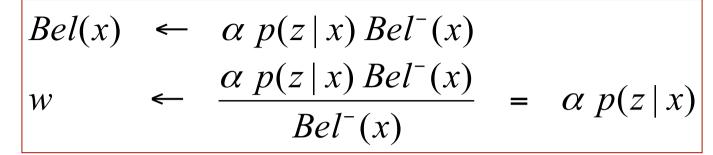


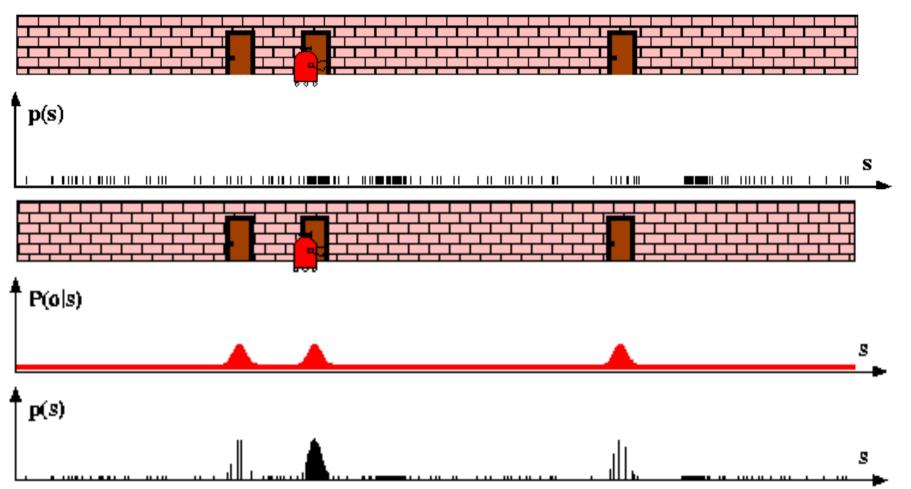




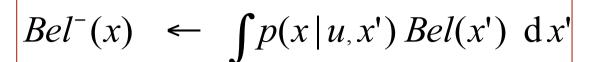


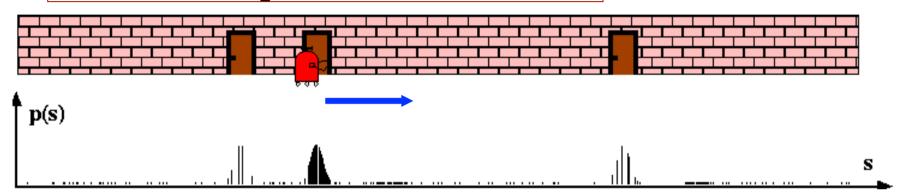
Sensor Information: Importance Sampling

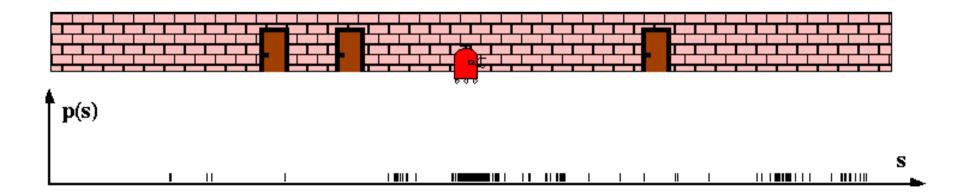




Robot Motion







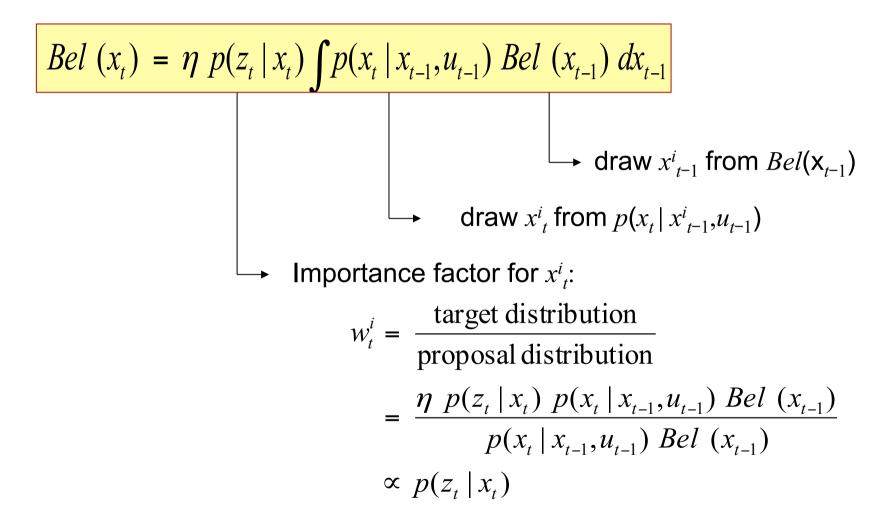
Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution
- Compute the importance weights : weight = target distribution / proposal distribution
- Resampling: "Replace unlikely samples by more likely ones"
- [Derivation of the MCL equations on the blackboard]

Particle Filter Algorithm

1. Algorithm **particle_filter**(S_{t-1} , $u_{t-1} z_t$): $2. \quad S_t = \emptyset, \quad \eta = 0$ **3.** For i = 1...nGenerate new samples 4. Sample index j(i) from the discrete distribution given by w_{t-1} 5. Sample from $p(x_t | x_{t-1}, u_{t-1})$ and u_{t-1} $\mathbf{6.} \qquad w_t^i = p(z_t \mid x_t^i)$ *Compute importance weight* 7. $\eta = \eta + w_t^i$ Update normalization factor 8. $S_t = S_t \cup \{< x_t^i, w_t^i > \}$ Insert **9.** For i = 1...n10. $w_t^i = w_t^i / \eta$ Normalize weights

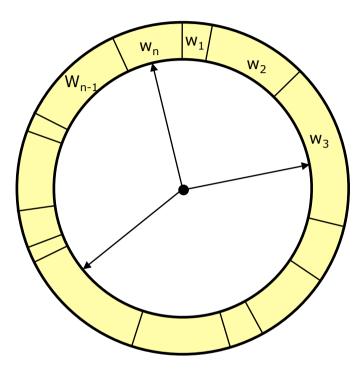
Particle Filter Algorithm



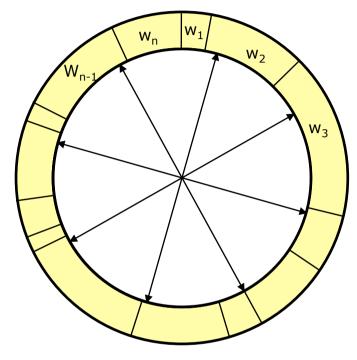
Resampling

- Given: Set *S* of weighted samples.
- Wanted : Random sample, where the probability of drawing x_i is given by w_i.
- Typically done n times with replacement to generate new sample set S'.

Resampling



- Roulette wheel
- Binary search, n log n



- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling Algorithm

- 1. Algorithm **systematic_resampling**(*S*,*n*):
- 2. $S' = \emptyset, c_1 = w^1$ 3. For i = 2...n Generate cdf 4. $c_i = c_{i-1} + w^i$ 5. $u_1 \sim U] 0, n^{-1}], i = 1$ Initialize threshold

6. For
$$j = 1...n$$

7. While
$$(u_j > c_i)$$

9.
$$S' = S' \cup \{< x^i, n^{-1} > \}$$

$$10. u_{j+1} = u_j + n^{-1}$$

Draw samples ... Skip until next threshold reached

Insert Increment threshold

11. Return S'

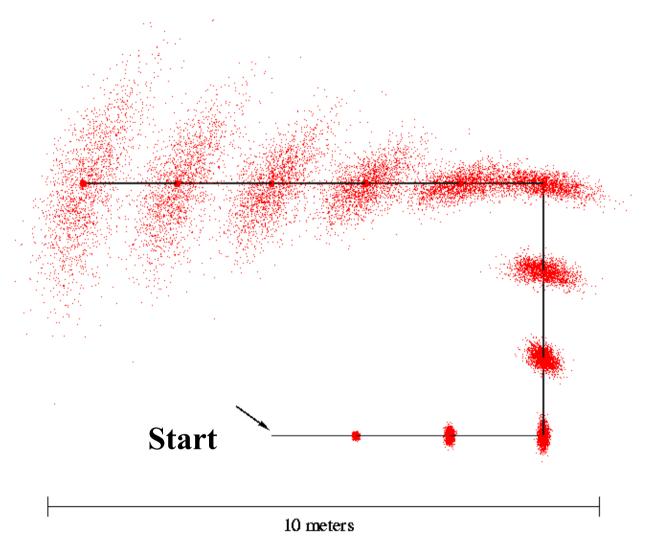
Also called stochastic universal sampling

Mobile Robot Localization

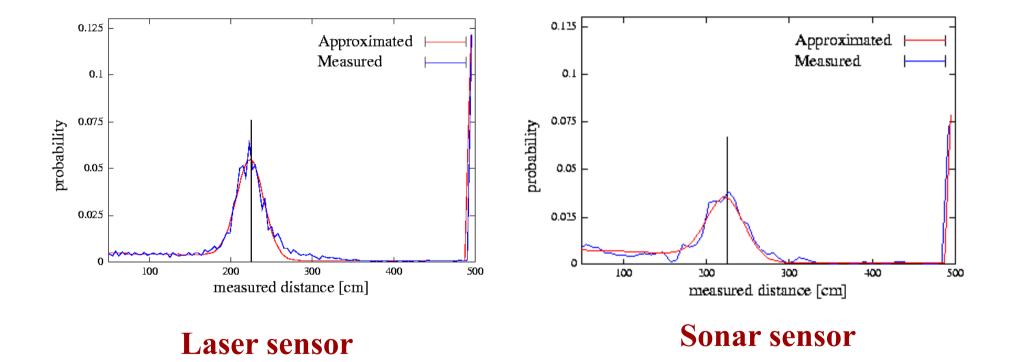
- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

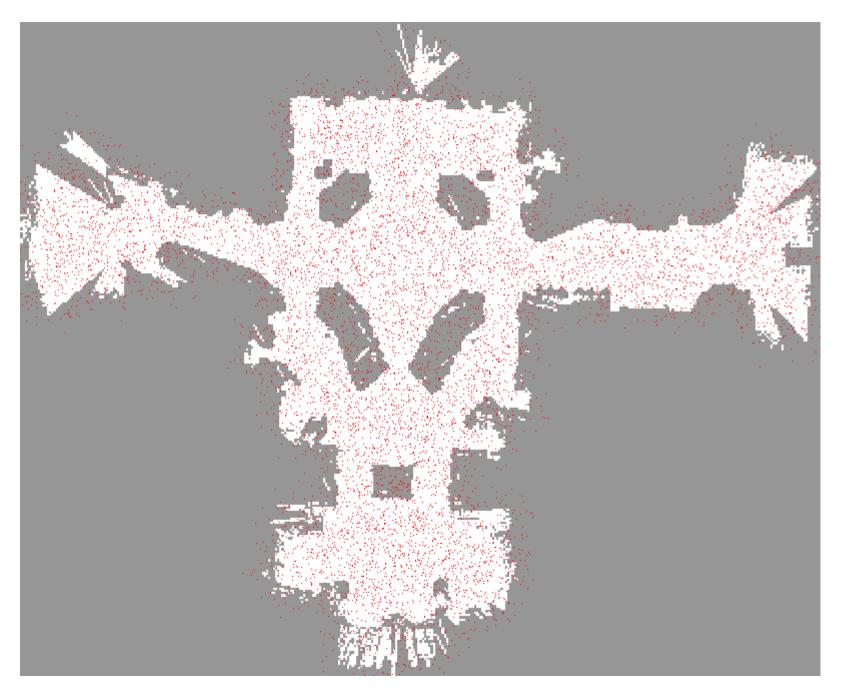
[For details, see PDF file on the lecture web page]

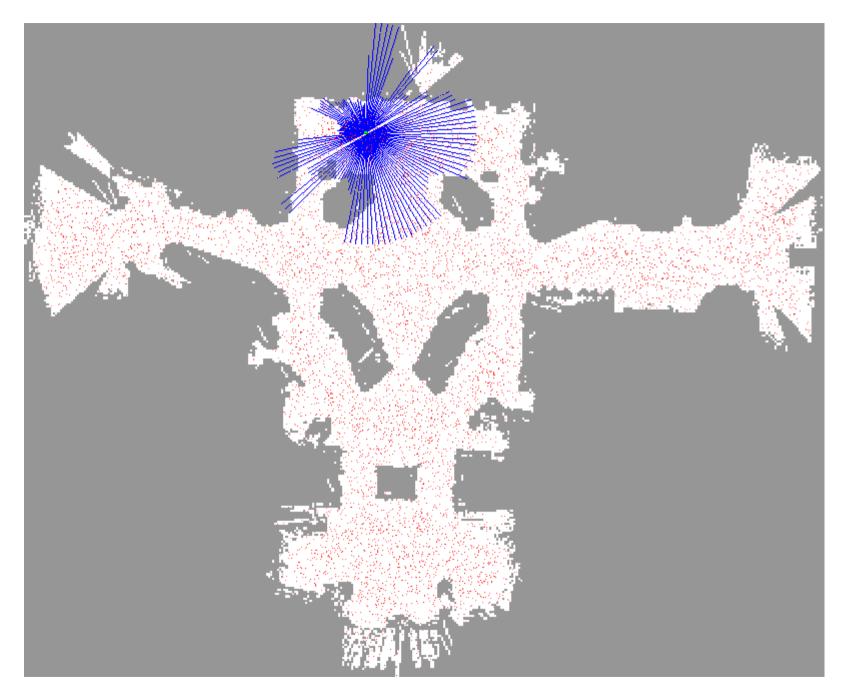
Motion Model Reminder

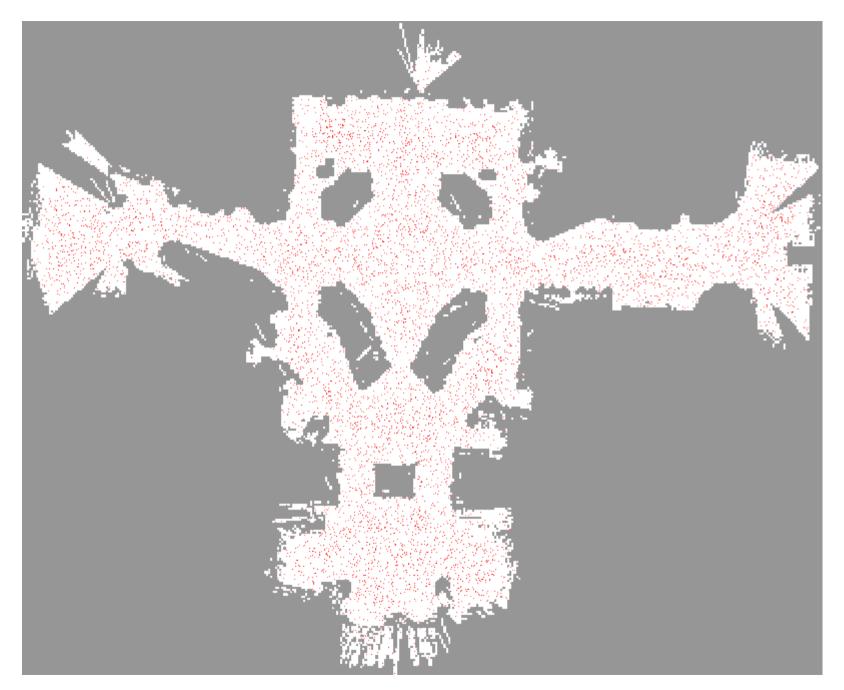


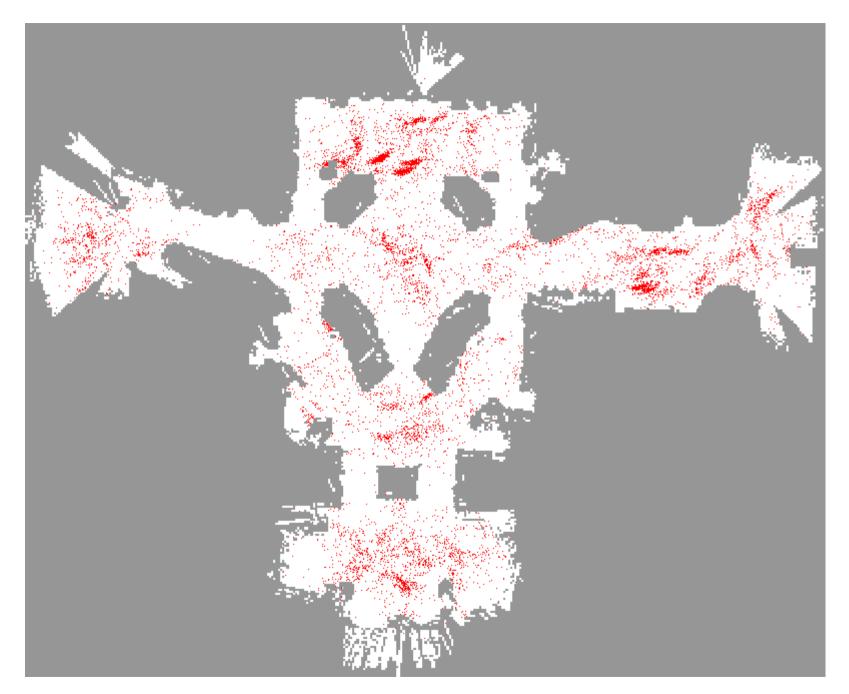
Proximity Sensor Model Reminder

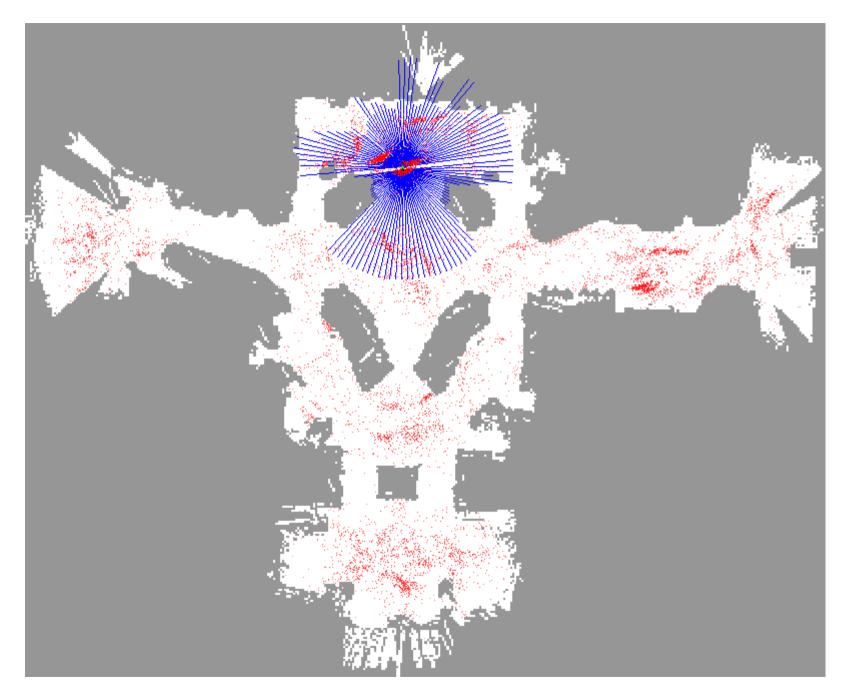


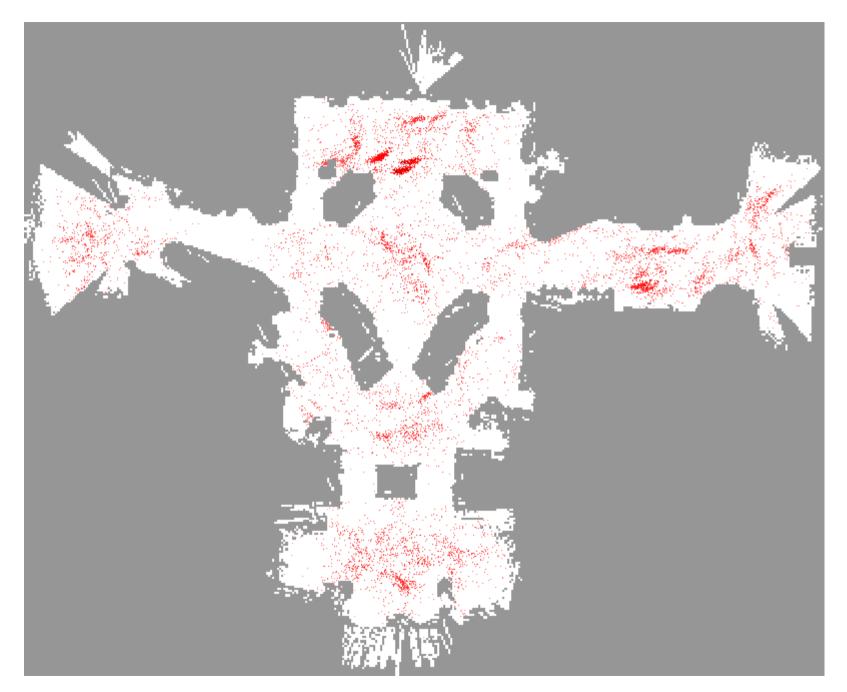


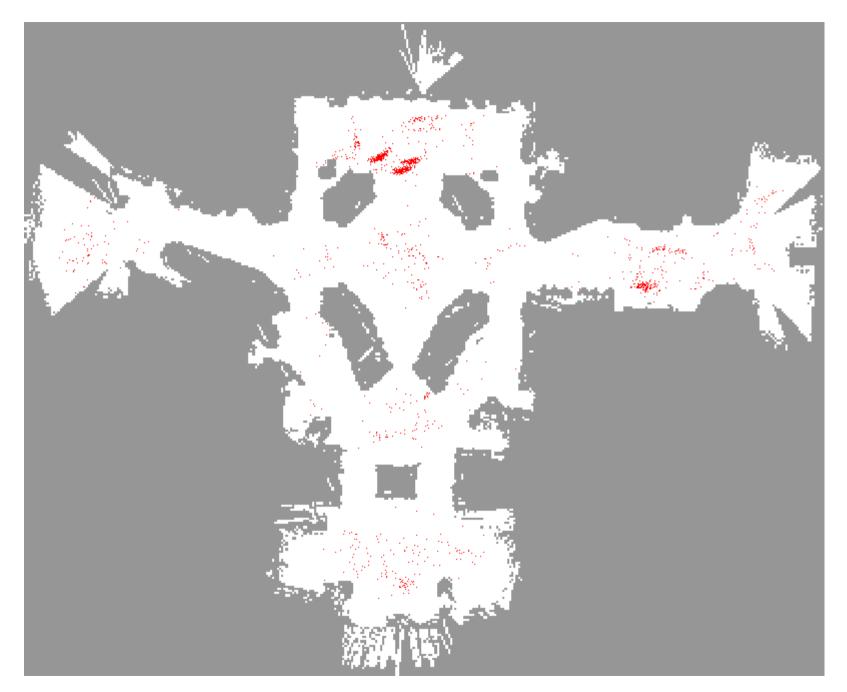


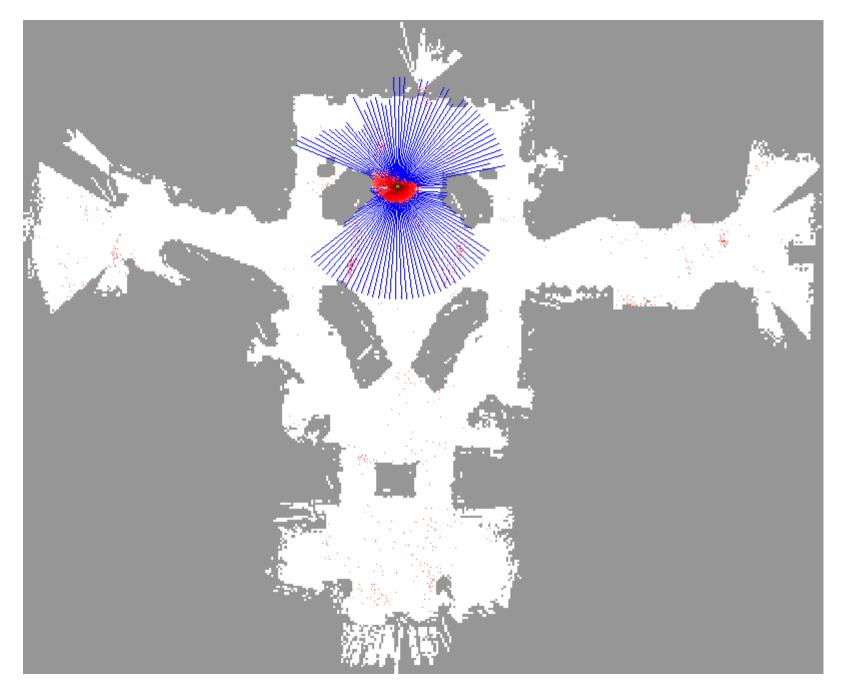


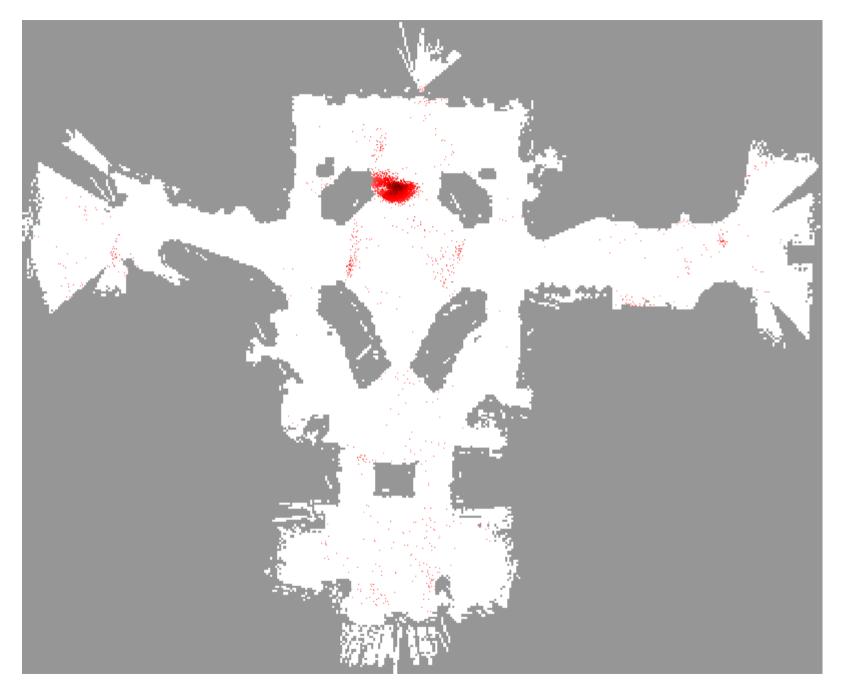


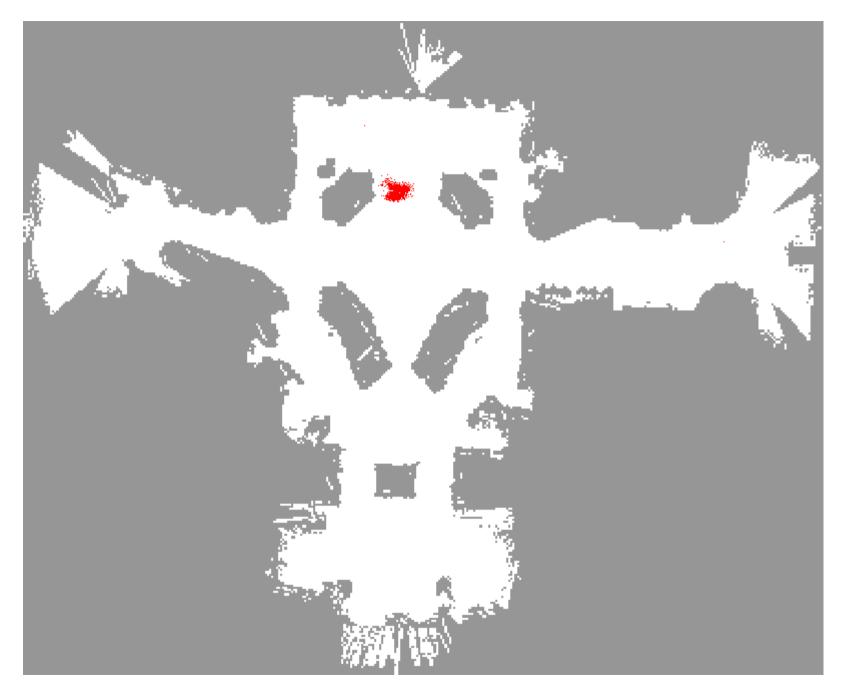


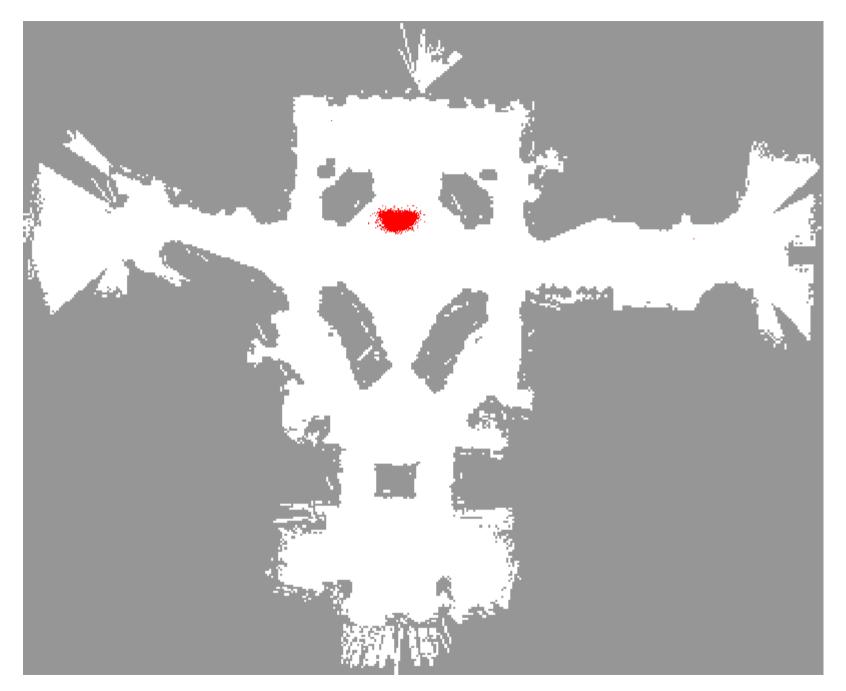


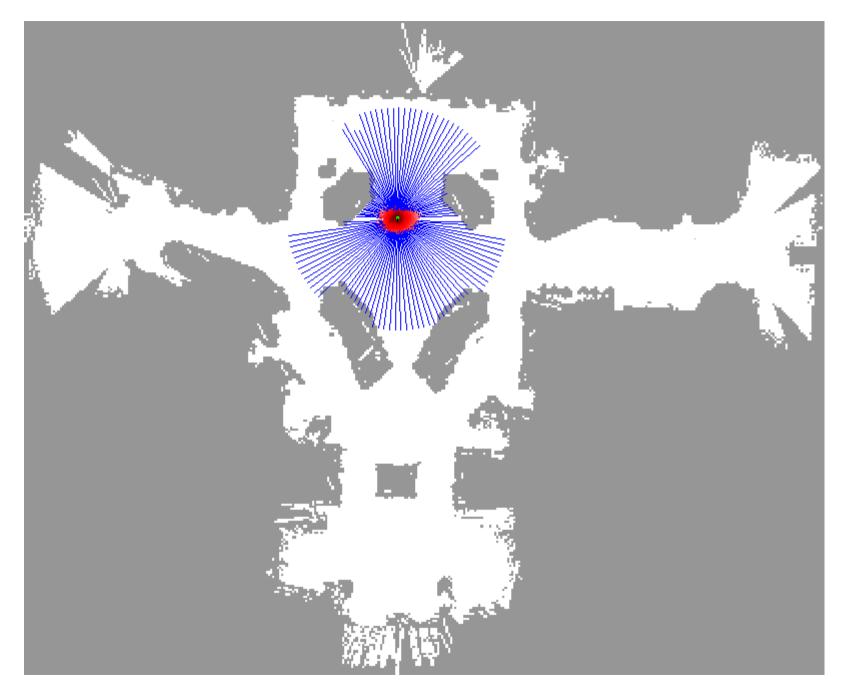


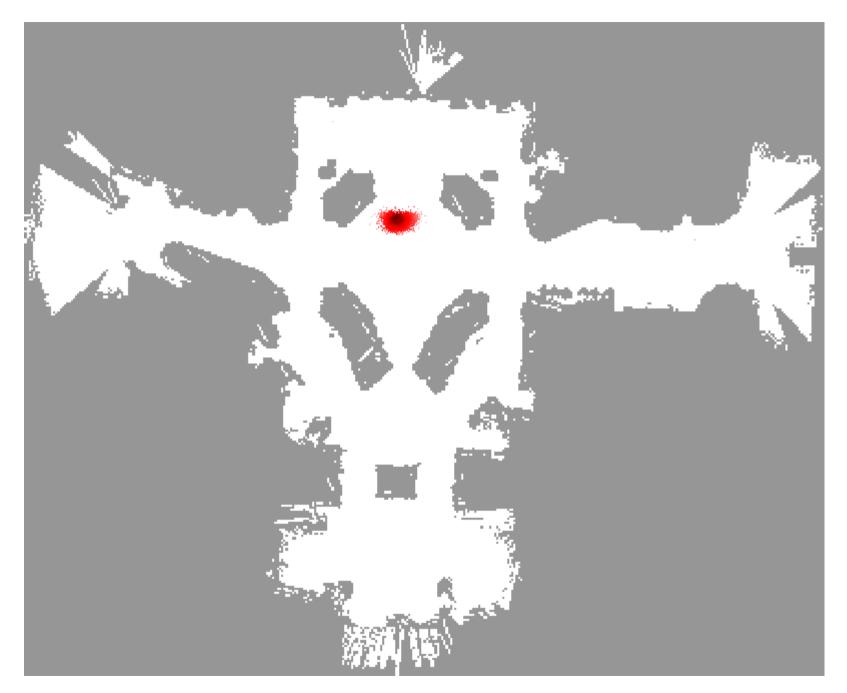


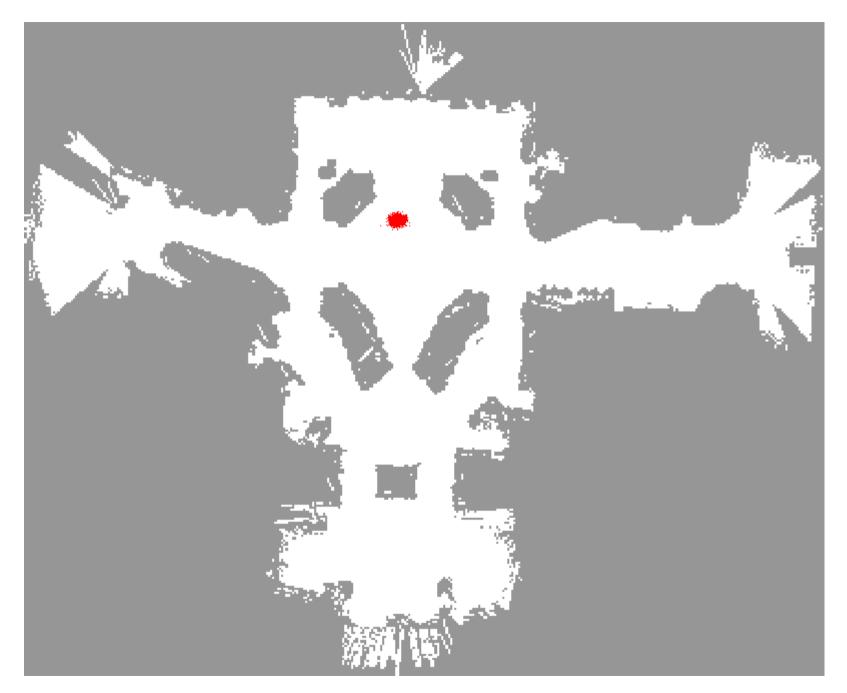


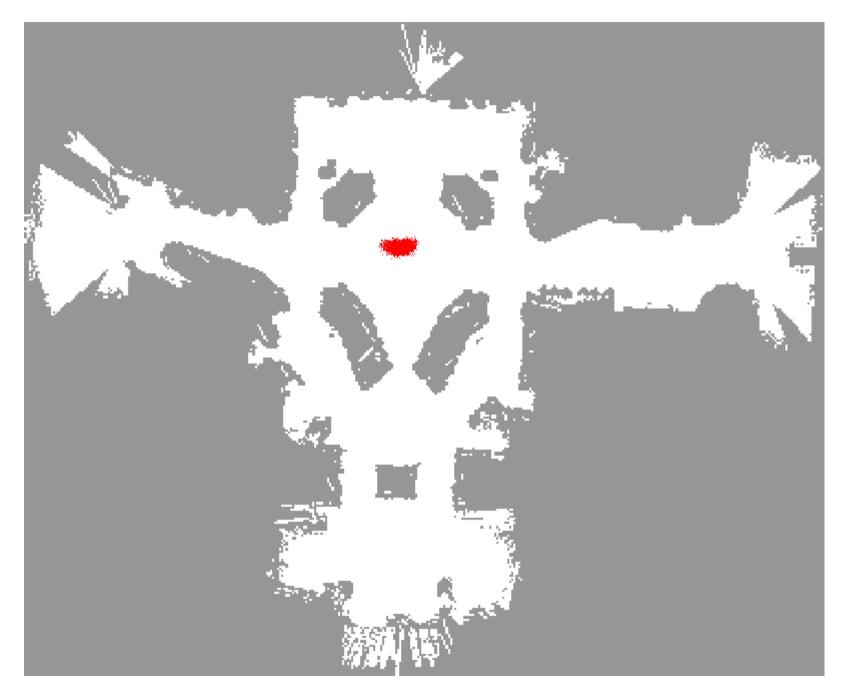


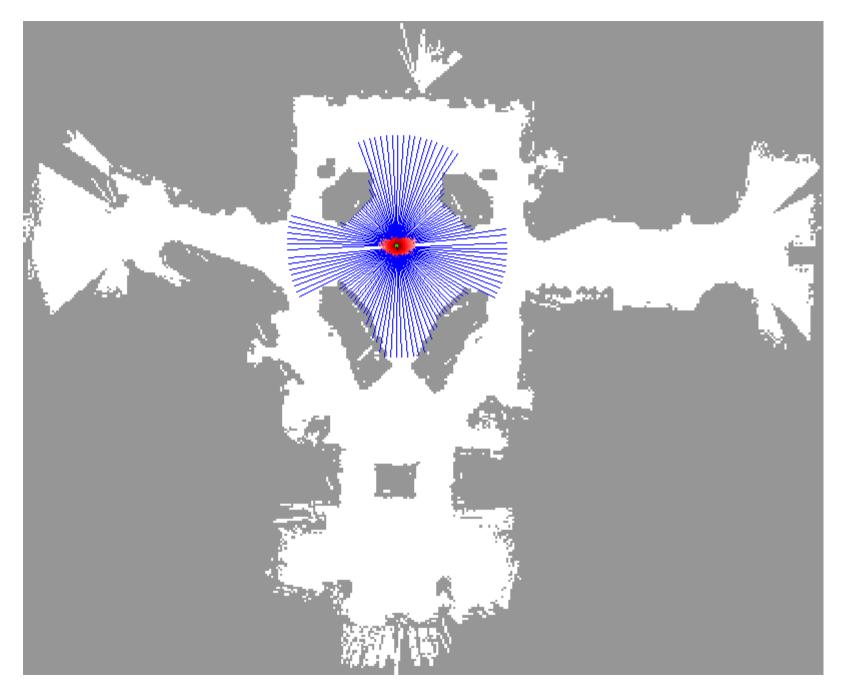


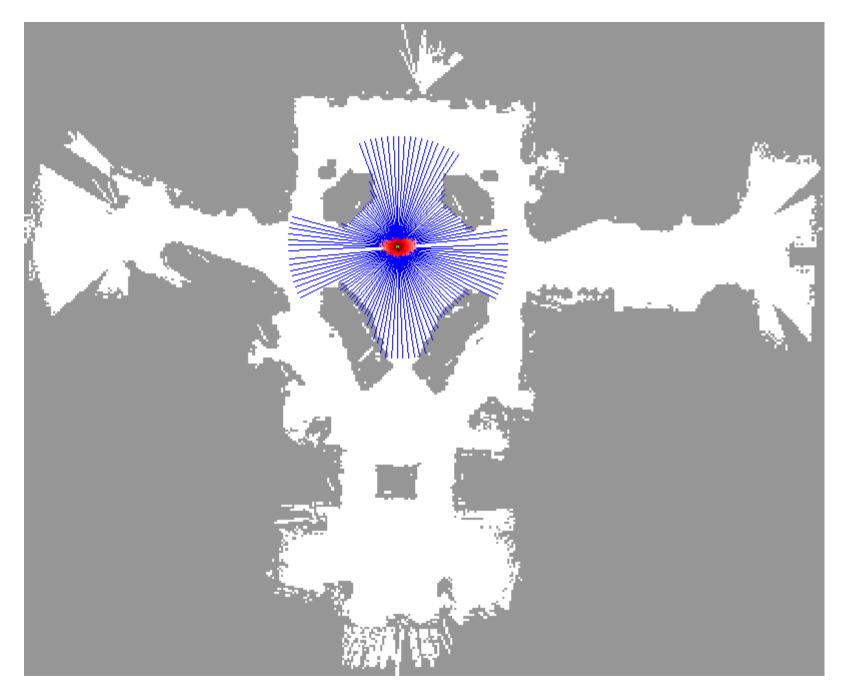




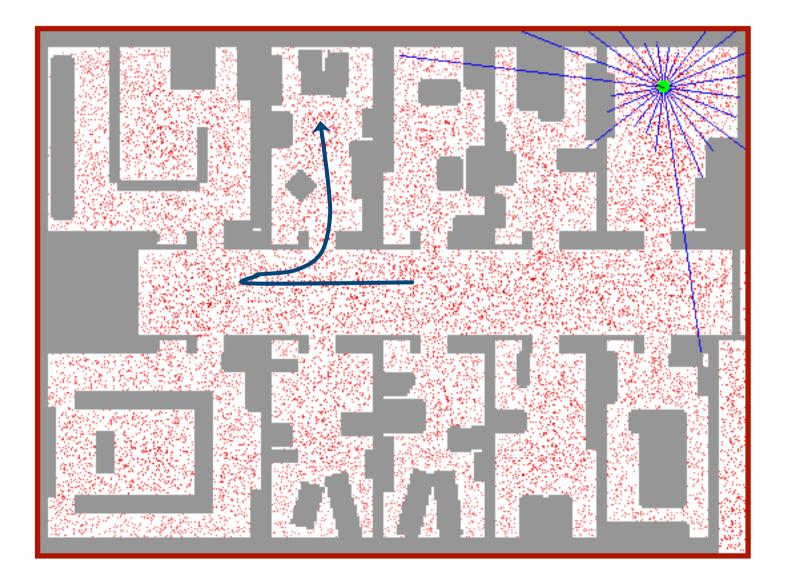




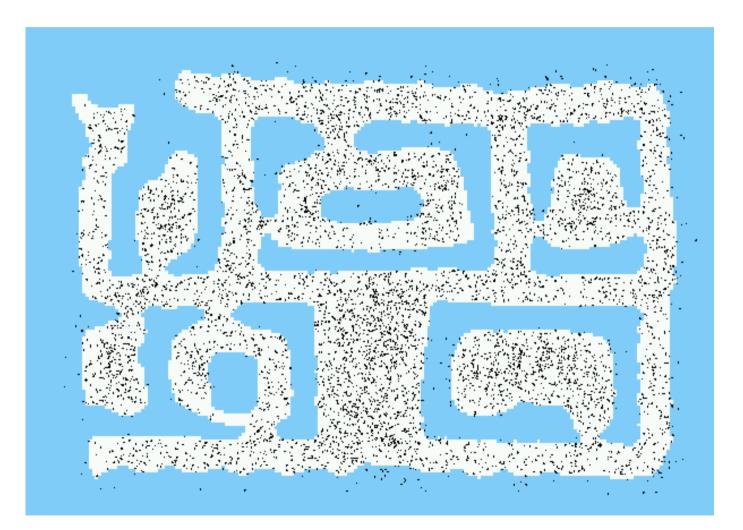




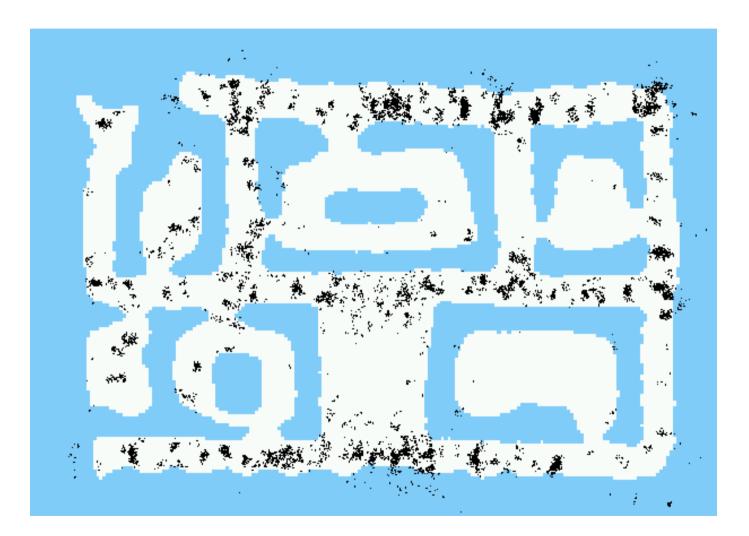
Sample-based Localization (sonar)



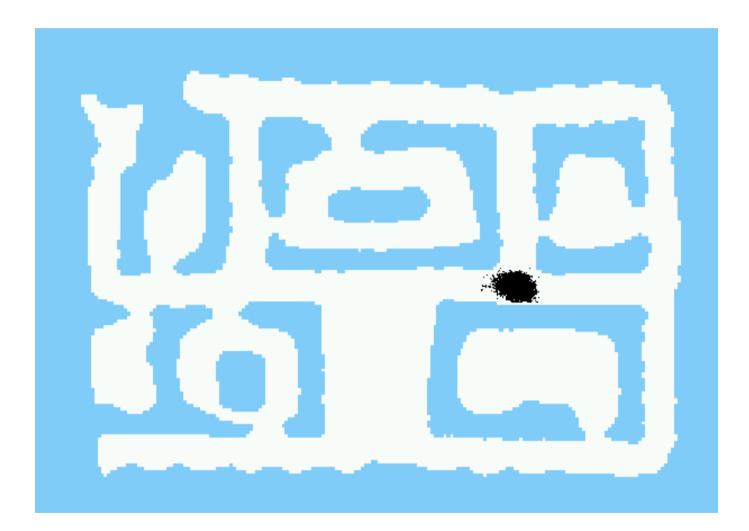
Initial Distribution



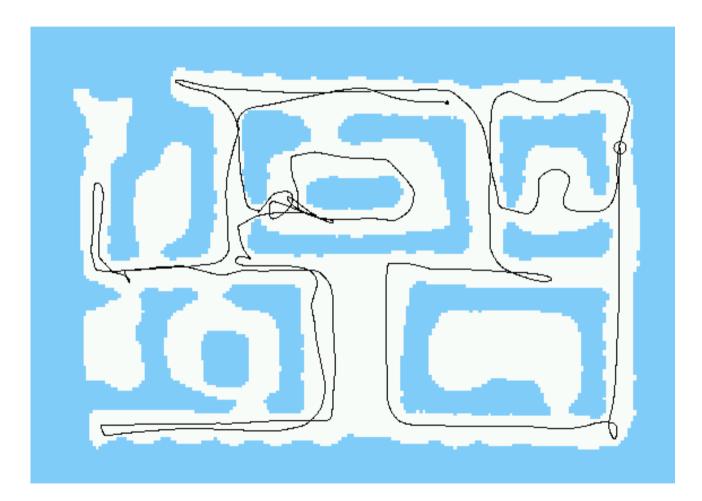
After Incorporating Ten Ultrasound Scans



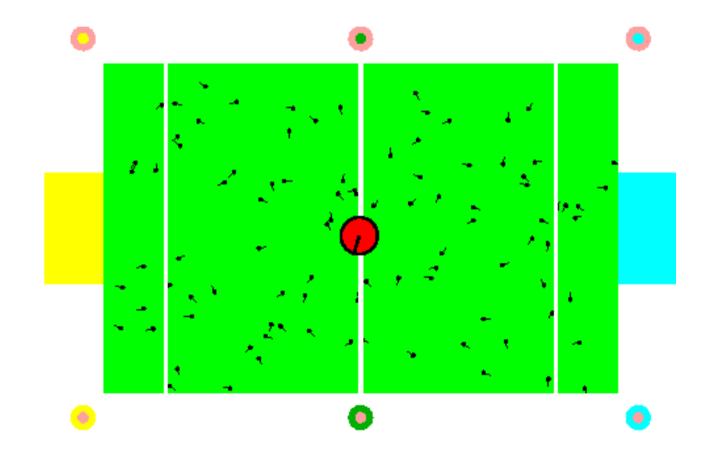
After Incorporating 65 Ultrasound Scans



Estimated Path

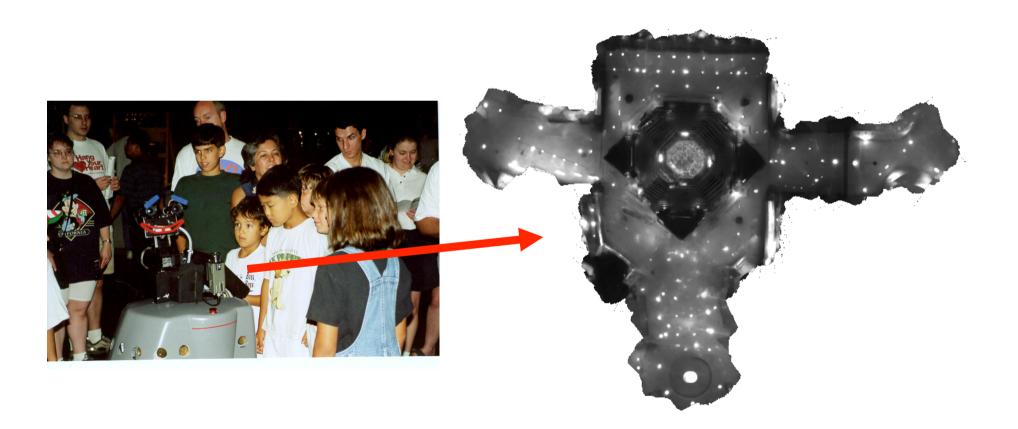


Localization for AIBO robots



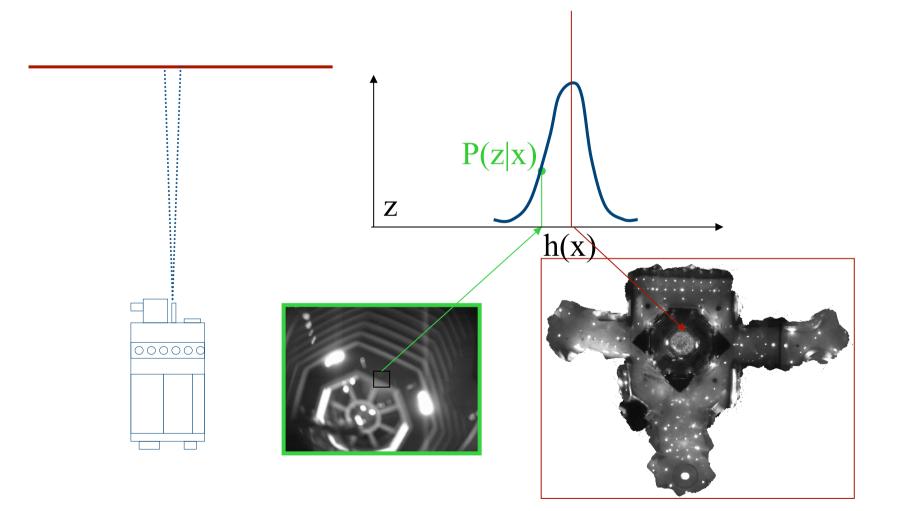
51

Using Ceiling Maps for Localization



[Dellaert et al. 99]

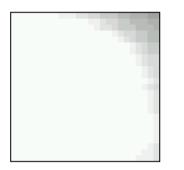
Vision-based Localization

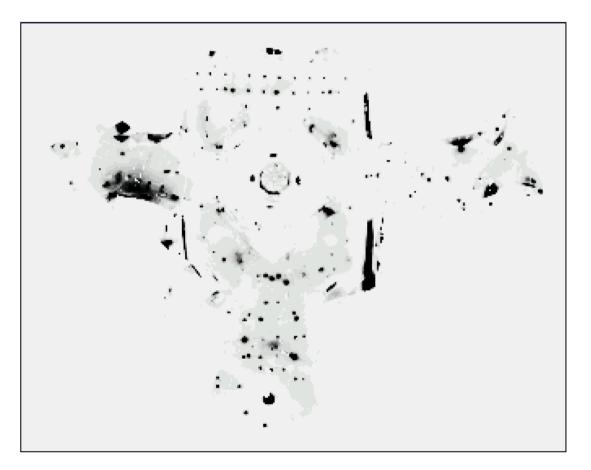


Under a Light

Measurement z:

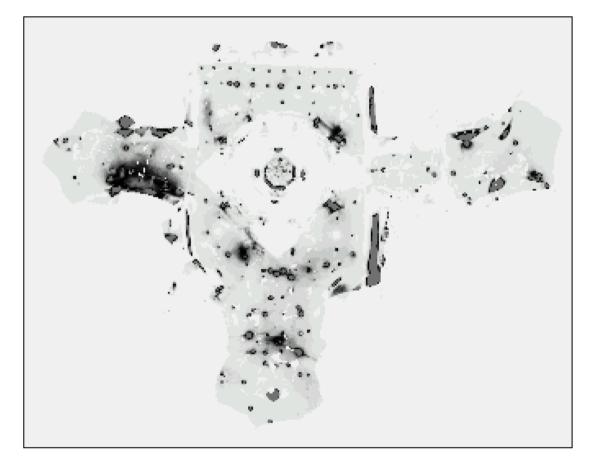
P(z|x):





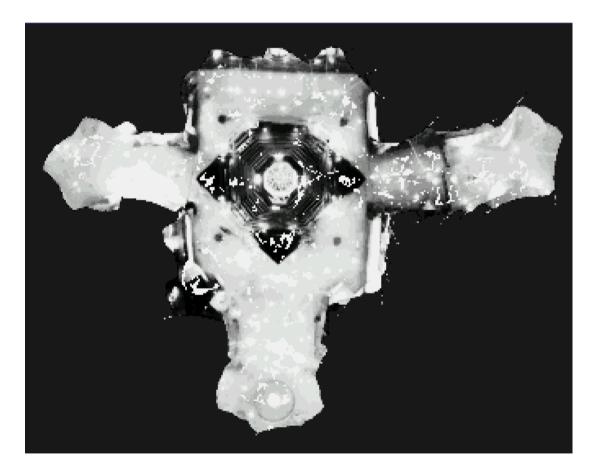
Next to a Light

Measurement z:

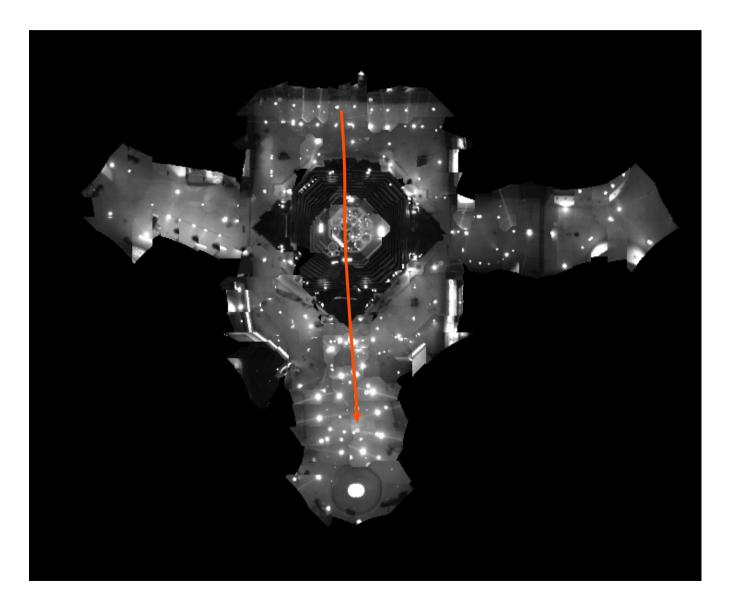


Elsewhere

Measurement z:



Global Localization Using Vision



Limitations

- The approach described so far is able to
 - track the pose of a mobile robot and to
 - globally localize the robot.
- How can we deal with localization errors (i.e., the kidnapped robot problem)?

Approaches

- Randomly insert samples (the robot can be teleported at any point in time).
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).

Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model non-Gaussian distributions
- Proposal to draw new samples
- Weight to account for the differences between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter

Summary – PF Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.