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The SLAM Problem

-

-

SLAM is the process by which a robot builds
a map of the environment and, at the same
time, uses this map to compute its location

J

Localization: inferring location given a map
Mapping: inferring a map given a location

SLAM: |learning a map and locating the robot
simultaneously



The SLAM Problem

e SLAM is a chicken-or-egg problem:
— A map is needed for localizing a robot
— A pose estimate is needed to build a map

e Thus, SLAM is (regarded as) a hard problem in
robotics



The SLAM Problem

e SLAM is considered one of the most
fundamental problems for robots to become
truly autonomous

® A variety of different approaches to address the
SLAM problem have been presented

e Probabilistic methods rule

e History of SLAM dates back to the mid-eighties
(stone-age of mobile robotics)



The SLAM Problem

Given:
e The robot’s controls

Upr = {ug, uo, - -+, up} " '
e Relative observations

Zo, =1{z1,22, " , Zt}
Wanted:
e Map of features

m = {m;, my, --- ,m,|

e Path of the robot
X = {Xo, X1y "y XL’}



The SLAM Problem

Features and Landmarks /""’-———\b
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e Absolute
landmark positions

Mobile Vehicle
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< Global Reference Frame
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SLAM Applications

SLAM is central to a range of indoor,
outdoor, in-air and underwater applications
for both manned and autonomous vehicles.

Examples:

e At home: vacuum cleaner, lawn mower

e Air: surveillance with unmanned air vehicles
eUnderwater: reef monitoring

eUnderground: exploration of abandoned mines
eSpace: terrain mapping for localization



SLAM Applications

Undersea
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Map Representations

Examples:
Subway map, city map, landmark-based map
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Maps are topological and/or metric
models of the environment




Map Representations

¢ Grid maps or scans, 2d, 3d >\

[Lu & Milios, 97; Gutmann, 98: TI
99; Haehnel, 01;...]

® | andmark-based

M x
x 3 W
Mol s =18
X pS i
% ; X oo
x I
4 % | x| X a
X
w| X S
: x .
X

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...
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Why is SLAM a hard problem?

1. Robot path and map are both unknown

2. Errors in map and pose estimates correlated

11



Why is SLAM a hard problem?
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uncertainty

® In the real world, the mapping between
observations and landmarks is unknown
(origin uncertainty of measurements)

e Data Association: picking wrong data
associations can have catastrophic
consequences (divergence)

g
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SLAM:
Simultaneous Localization And Mapping

e Full SLAM:

p(xO:t 1M l Zl:t ’ul:t)

Estimates entire path and map!

® Online SLAM:

p(x,,mlz. .u. )= ff...fp(xm,m 1 z,.,,u,,) dx,dx,..dx,

Integrations (marginalization) typically done
recursively, one at a time

Estimates most recent pose and map!

-1
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Graphical Model of Full SLAM

p(xlzt UL ‘ Zl:t > ul:t)




Graphical Model of Online SLAM

O

p(x,m|z,,u.,) =ff...fp(x1:t,m |z, uy, ) dx,dx,...dx,_,
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Graphical Model: Models

x, = f(xp—1, ug)

"Motion model"

"Observation model"
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Remember? KF Algorithm

Algorithm Kalman_filter(u.;, ;. ;, U, Z;):

Prediction:
Et = Atlut—l + Btut
S =A% _A +R

= t-1

D WN —

Correction:

K, =2C/(CzC +0)"
wo=u+K(z-Cu,)

3 =(I-K,C)Z

L XN U

Return u, Z;
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EKF SLAM: State representation

e Localization

Tk
Yk

Or Ozy Ogz0
Oyr O Oy

Ck

3x1 pose vector y
3x3 cov. matrix *

e SLAM

Landmarks are simply added to the state.
Growing state vector and covariance matrix!

XR Cr Crv, Crym, -+ Cru,
m; Cvur Cumy, Cumonm, -0 Cuym,
xp = | M2 C.=| Omer Cmony, Cn, oo Chom,

| Cv,r Cvonvy O, -+ O,



EKF SLAM: State representation

e Map with n landmarks: (3+2n)-dimensional
Gaussian

X Uﬁ O, 04 0y 0y Oy,
Y Oy y2 Oy Gyll Gylz Gylzv
0 Og Oy O ; Og, O, Oy,
Bel(x,,m,) = b s o Oy Og (7121 Oy, = Oy
Ly Oy Oy, O, Oy 0122 O,
lN Oy, Oy, Oy, Oy O 012N
® Can handle hundreds of dimensions



EKF SLAM: Building the Map

Filter Cycle, Overview:

1. State prediction (odometry)

2. Measurement prediction

3. Observation

4. Data Association

5. Update

6. Integration of new Iandmarks%ﬁ%

20



EKF SLAM: Building the Map

e State Prediction

Odometry:
/\ XR = f(xRa 11)
Cr=F,CrFT +F,UFT

Robot-landmark cross-
covariance prediction:

éRMi = Fy Crum,

(skipping time index k)

XR Cr  Crvy CrMm, -+ Crum,
m; CMlR CMl CM1M2 o CMan
x, = | M2 Cp= | Omr Cvmonmy  Cn, -0 Cpm,

| m, |, | Cv,r Cvmomy, Cmpm, 0 COm,, ]



EKF SLAM: Building the Map

® Measurement Prediction

o

Global-to-local
frame transform #

/

Zr = h(Xg)
[ xp | [ Cgr Cru, Crv, -+ Crum, |
m; CMlR CMl CMlMQ e CMan
x, = | M2 Cr = Cam,r Cronry Ch, o Cmym,
my, |, i CMnR CMan CMnM2 CMn dk
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EKF SLAM: Building the Map

® Observation
(x,y)-point landmarks

1

L U1 | 21
o2 ][
Y2

| (> [ o
’.‘ R’“__O R2]

XR Cr Cryv, Cru, CrMm,
m; Cvur Oy, Cuym, Chu,M,
xp = | M2 Cp= | Omor Cmomy Oy CmyM,
m,, Cyv,r Cum,m Cur,ns Chu,,
k | 1k
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EKF SLAM: Building the Map

e Data Association

R 4

L

Xk —

a?

Cr Cru,
Cvyr Oy
Cvor  Cuyn

| Cym,r Cum,y

Cru,

CM1M2
Ch,

Associates predicted
measurements z;
with observation z;,

]

I BN
vy = Zy — 2y
v . . -

S,ZJ = R‘ZC—I—HZC;CHZ
(Gating)

Crm, |

Chwry,

Chw,,

Crriy - Cum, |,
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EKF SLAM: Building the Map

e Filter Update

L

Xk

- Cr Cru,
Cv,r  Cum,
Cy,r Chron

| Cym,r Cum,,

The usual Kalman
filter expressions

Ky =Cy HTS !
X = X + K vy

Cr = (I — Ky H)Cj,

Crvm, - CRru,

Cvynv, -+ Cuym,
T o0 Chpi

Crorie - Cum, |,
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EKF SLAM: Building the Map

® Integrating New Landmarks

L

Xk

A

*
*
*
*
ﬂ

Cr Cr,
CwmR Chw,
Cwm,R Chu, My

Cwm, R Cw,, M,

| CMn+1R CMn+1M1

State augmented by
my1 = g(XR, Z;)

Cu,., =GrCrGL+ G, R;GE

n+1

Cross-covariances:

Cwm, . Mm; = Gr CRu;

CuM,.1r = GRrRCR

Crv, -+ CRrum, CRM 11
CM1M2 T CMan CMan+1
CMz U CMzMn CM2Mn+1
Cv,m, -+ Cm,  Cm,m,
CMn+1M2 o CMn+1Mn CMn+1 dr 26




EKF SLAM

Map

Correlation matrix

27



EKF SLAM

Correlation matrix

Map

28



EKF SLAM

Correlation matrix

Map

29



EKF SLAM: Correlations Matter

e What if we neglected cross-correlations?

i Cp 0 0
0 Cuy, -+ O Crm; = O3x2
Cp=| . . .
: : ) : OMZ'MfH_l — 02X2
0 0 .o Cur |,

— Landmark and robot uncertainties would
become overly optimistic

— Validation gates for matching too small
— Data association would fail
— Multiple map entries of the same landmark

— Inconsistent map Vid
Ideo 30



Error Propagation (cont.)

Want to derive:

Cyz =ACxgz

In words: how is the cross-correlation C,, between
two normally distributed RVs X and Z with moments
x, Cy and z, C, affected by a linear transform of X

of the form
y=Ax+B ?

We recall that the following holds:

Cy =ACx A"

31



Error Propagation (cont.)

We augment the linear mapping by the variable
of interest

O_ X _B-
I v/ 0

y A
0

Z

Note that this implements

y=Ax+B

Z — Z



Error Propagation (cont.)

Renaming the variables of the augmented system

x' =[x z] y =[y =]

gives y = A" x' + B’ with the augmented
covariance matrices

Cy Cyy | Cx Cxgz

Cyr = Czy (g Ox = Czx (g

The augmented covariance matrix is again given by

CY/ = A’ CX/ AT



Error Propagation (cont.)

Resubstitution yields

ol A 0] Cx Cxz || AT 0
e = 0 [ Czx Oy 0 I
| Acx ACxz || AT 0
- Crzx Cy 0 I
| Acx AT AcCyy
| ozx ATy

Thus:
Cyz =ACxgz

34



SLAM: Loop Closure

® | oop closure is the problem of recognizing an

already mapped area, typically after a long
exploration path (the robot "closes a loop")

e Structually identical to data association, but

e high levels of ambiguity
e possibly useless validation gates

e environment symmetries

® Uncertainties collapse after a loop closure
(whether the closure was correct or not)

35



SLAM: Loop Closure

® Before loop closure

36



SLAM: Loop Closure

e After loop closure
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SLAM: Loop Closure

e By revisiting already mapped areas, uncertain-
ties in robot and landmark estimates can be
reduced

® This can be exploited to "optimally"” explore
an environment for the sake of better (e.qg.
more accurate) maps

e Exploration: the problem of where to acquire
new information (e.g. depth-first vs. breadth
first)

— See separate chapter on exploration
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KF-SLAM Properties (Linear Case)

e The determinant of any sub-matrix of the map
covariance matrix decreases monotonically as
successive observations are made

Standard Deviation in X (m)

—_
w
T

.
T

0.5

* When a new land-
mark is initialized,
its uncertainty is

maximal
. 1“—
’ - * Landmark uncer-
tainty decreases
iﬁi 1 1 monotonically with
T JI h b t]
uw-r—»\ - Y each new observation
T e — \L L~1 B
LHHE_;EH_ :L ‘ o
h_“‘:fh=—==-—=st——-————-_~;_—— —t—‘xb%{_ — ———
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[Dissanayake et al., 2001] 39



KF-SLAM Properties (Linear Case)

e In the limit, the landmark estimates become
fully correlated

[Dissanayake et al., 2001] 40



KF-SLAM Properties (Linear Case)

e In the limit, the covariance associated with any
single landmark location estimate is determined
only by the initial covariance in the vehicle
location estimate.

o

4
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[Dissanayake et al., 2001] 41




EKF SLAM Example: Victoria Park

Syndey, Australia

42



Victoria Park: Data Acquisition

[courtesy by E. Nebot]
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Victoria Park: Estimated Trajectory
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[courtesy by E. Nebot] 44



Victoria Park: Landmarks

e
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[courtesy by E. Nebot]
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EKF SLAM Example: Tennis Court

[courtesy by J. Leonard]
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EKF SLAM Example: Tennis Court

Odometry Profile of the Robot Locations
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odometry

-60 -50 -40 -30 -20 -10 0

estimated trajectory

[courtesy by John Leonard] 47



EKF SLAM Example: Line Features

e KTH Bakery Data Set
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[Wulf et al., ICRA 04]
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EKF SLAM Example: AGV

® Pick-and-Place AGV at Geiger AG, Ludwigsburg
(Project by LogObject/Nurobot)
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[courtesy by LogObject/Nurobot]



EKF SLAM Example:

AGV

® Pick-and-Place AGV at Geiger AG, Ludwigsburg
(Project by LogObject/Nurobot)
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[courtesy by LogObject/Nurobot]




EKF-SLAM: Complexity

e Cost per step: quadratic in n, the number of
landmarks: O(n?)

e Total cost to build a map with n landmarks:
Oo(n3)
e Memory: O(n?)

Problem: becomes computationally intractable
for large maps!

= Approaches exist that make EKF-SLAM
amortized O(n) / O(n?) / O(n?)
D&C SLAM /Paz et al., 2006]
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SLAM Techniques

e EKF SLAM
® FastSLAM
® Graphical SLAM

® Topological SLAM
(mainly place recognition)

® Scan Matching / Visual Odometry
(only locally consistent maps)

e Approximations for SLAM: Local submaps,
Sparse extended information filters, Sparse
links, Thin junction tree filters, etc.

52



EKF-SLAM: Summary

e Convergence proof for linear case!

e Can diverge if nonlinearities are large
(and the reality is nonlinear...)

® First-order error propagation becomes a
problem. Uncertainties large with respect to
the degree of non-linearity

e Has been successfully applied in medium-
scale environments

e Approximations reduce the computational
complexity

53



Approximations for SLAM

® | ocal submaps
[Leonard et al.99, Bosse et al. 02, Newman et al. 03]

® Sparse links (correlations)
[Lu & Milios 97, Guivant & Nebot 01]

e Sparse extended information filters
[Frese et al. 01, Thrun et al. 02]

® Thin junction tree filters
[Paskin 03]

e Rao-Blackwellisation (FastSLAM)
[Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]
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