Introduction to Mobile Robotics

SLAM: Simultaneous Localization and Mapping

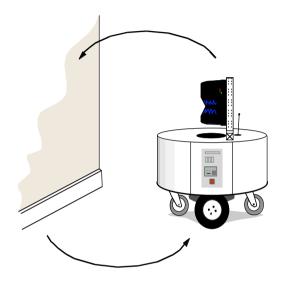
Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Slides by Kai Arras and Wolfram Burgard Last update: June 2010

SLAM is the process by which a robot **builds a map** of the environment and, at the same time, uses this map to **compute its location**

- Localization: inferring location given a map
- **Mapping:** inferring a map given a location
- **SLAM:** learning a map and locating the robot simultaneously



- SLAM is a **chicken-or-egg problem**:
 - → A map is needed for localizing a robot
 - → A pose estimate is needed to build a map
- Thus, SLAM is (regarded as) a hard problem in robotics

- SLAM is considered one of the most fundamental problems for robots to become truly autonomous
- A variety of different approaches to address the SLAM problem have been presented
- **Probabilistic methods** rule
- History of SLAM dates back to the mid-eighties (stone-age of mobile robotics)

Given:

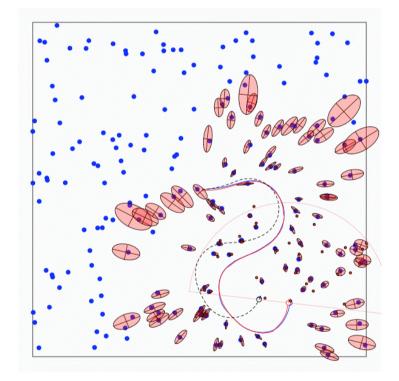
The robot's controls

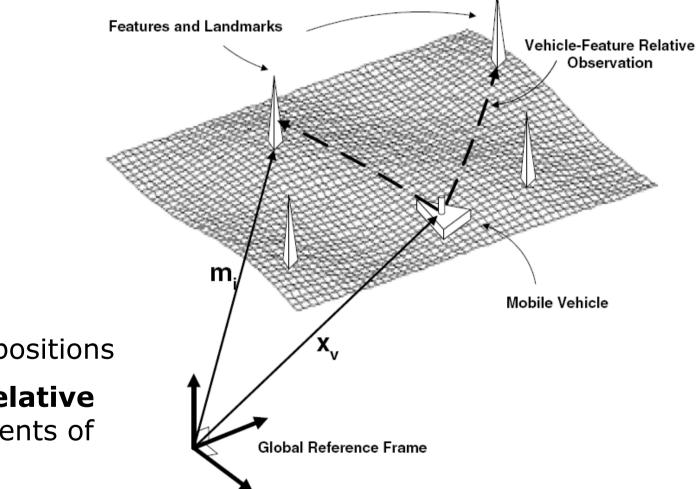
 $\mathbf{U}_{0:k} = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$

• Relative observations $\mathbf{Z}_{0:k} = \{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_k\}$

Wanted:

- Map of features $\mathbf{m} = \{\mathbf{m}_1, \mathbf{m}_2, \cdots, \mathbf{m}_n\}$
- Path of the robot $\mathbf{X}_{0:k} = \{\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_k\}$





- Absolute robot pose
- Absolute landmark positions
- But only relative measurements of landmarks

SLAM Applications

SLAM is central to a range of indoor, outdoor, in-air and underwater **applications** for both manned and autonomous vehicles.

Examples:

- •At home: vacuum cleaner, lawn mower
- •Air: surveillance with unmanned air vehicles
- Underwater: reef monitoring
- Underground: exploration of abandoned mines
- Space: terrain mapping for localization

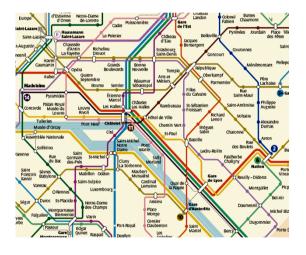
SLAM Applications

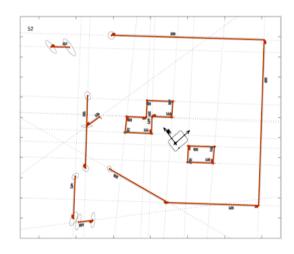


Map Representations

Examples:

Subway map, city map, landmark-based map

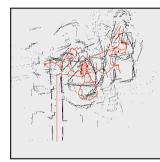


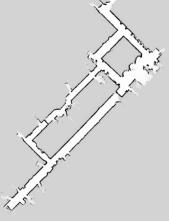


Maps are **topological** and/or **metric models** of the environment

Map Representations

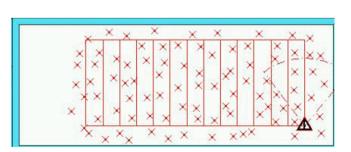
• Grid maps or scans, 2d, 3d

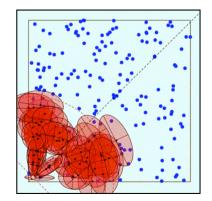




[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

Landmark-based

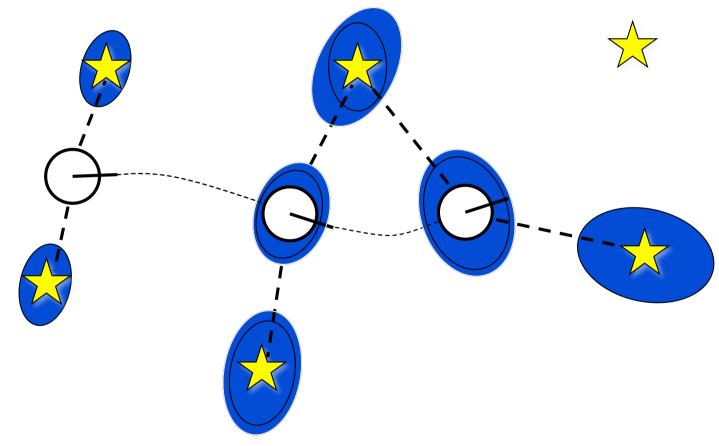




[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...

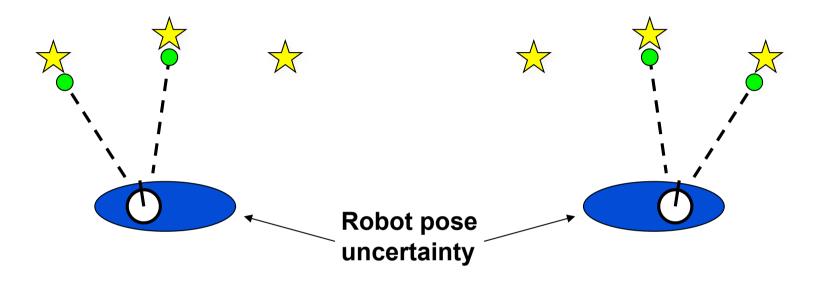
Why is SLAM a hard problem?

1. Robot path and map are both **unknown**



2. Errors in map and pose estimates correlated

Why is SLAM a hard problem?



- In the real world, the mapping between observations and landmarks is unknown (origin uncertainty of measurements)
- Data Association: picking wrong data associations can have catastrophic consequences (divergence)

SLAM: Simultaneous Localization And Mapping

• Full SLAM:

 $p(x_{0:t}, m | z_{1:t}, u_{1:t})$

Estimates entire path and map!

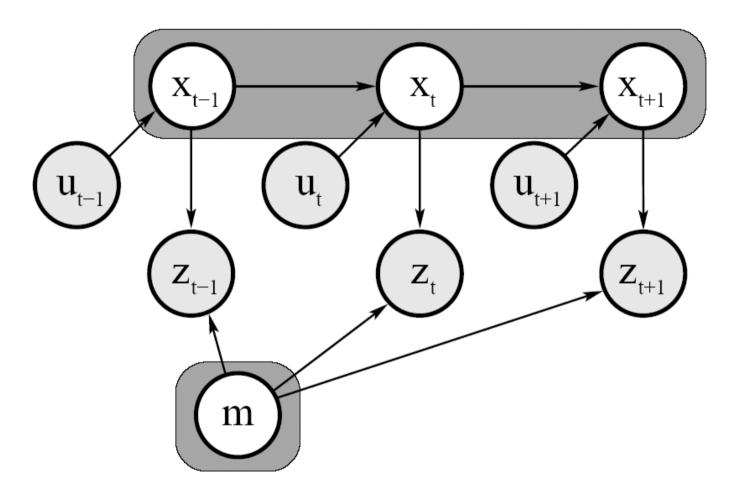
• Online SLAM:

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \int \dots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_1 dx_2 \dots dx_{t-1}$$

Integrations (marginalization) typically done recursively, one at a time

Estimates most recent pose and map!

Graphical Model of Full SLAM



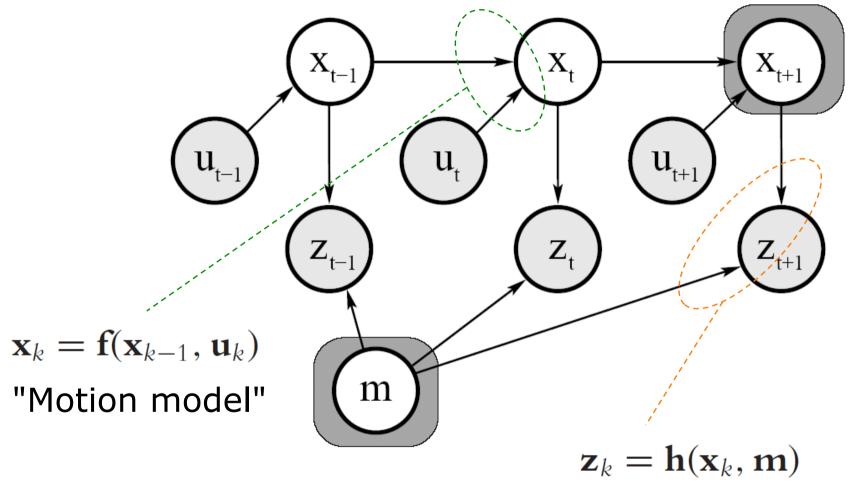
 $p(x_{1:t}, m | z_{1:t}, u_{1:t})$

Graphical Model of Online SLAM



$$p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \int \dots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_1 dx_2 \dots dx_{t-1}$$

Graphical Model: Models



"Observation model"

Remember? KF Algorithm

- 1. Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2. Prediction:

$$\mathbf{3.} \quad \overline{\boldsymbol{\mu}}_t = A_t \boldsymbol{\mu}_{t-1} + B_t \boldsymbol{\mu}_t$$

$$\mathbf{4.} \qquad \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

5. Correction:

6.
$$K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$$

7.
$$\mu_t = \mu_t + K_t (z_t - C_t \mu_t)$$

- **8.** $\Sigma_t = (I K_t C_t) \overline{\Sigma}_t$
- 9. Return $\mu_{t\prime} \Sigma_t$

EKF SLAM: State representation

• Localization

3x1 pose vector
3x3 cov. matrix $\mathbf{x}_k = \begin{bmatrix} x_k \\ y_k \\ \theta_k \end{bmatrix}$ $C_k = \begin{bmatrix} \sigma_x^2 & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{yx} & \sigma_y^2 & \sigma_{y\theta} \\ \sigma_{\theta x} & \sigma_{\theta y} & \sigma_{\theta}^2 \end{bmatrix}$

SLAM

Landmarks are **simply added** to the state. **Growing** state vector and covariance matrix!

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix}_{k} C_{k} = \begin{bmatrix} C_{R} & C_{RM_{1}} & C_{RM_{2}} & \cdots & C_{RM_{n}} \\ C_{M_{1}R} & C_{M_{1}} & C_{M_{1}M_{2}} & \cdots & C_{M_{1}M_{n}} \\ C_{M_{2}R} & C_{M_{2}M_{1}} & C_{M_{2}} & \cdots & C_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_{n}R} & C_{M_{n}M_{1}} & C_{M_{n}M_{2}} & \cdots & C_{M_{n}} \end{bmatrix}_{k}$$

EKF SLAM: State representation

Map with *n* landmarks: (3+2*n*)-dimensional Gaussian

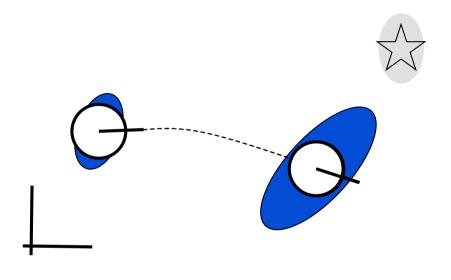
$$Bel(x_{t},m_{t}) = \begin{pmatrix} \begin{pmatrix} x \\ y \\ \theta \\ l_{1} \\ l_{2} \\ \vdots \\ l_{N} \end{pmatrix}, \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{x\theta} & \sigma_{xl_{1}} & \sigma_{xl_{2}} & \cdots & \sigma_{xl_{N}} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} & \sigma_{yl_{1}} & \sigma_{yl_{2}} & \cdots & \sigma_{yl_{N}} \\ \sigma_{x\theta} & \sigma_{y\theta} & \sigma_{\theta}^{2} & \sigma_{\theta l_{1}} & \sigma_{\theta l_{2}} & \cdots & \sigma_{\theta l_{N}} \\ \sigma_{xl_{1}} & \sigma_{yl_{1}} & \sigma_{\theta l_{1}} & \sigma_{l_{1}}^{2} & \sigma_{l_{1}l_{2}} & \cdots & \sigma_{l_{1}l_{N}} \\ \sigma_{xl_{2}} & \sigma_{yl_{2}} & \sigma_{\theta l_{2}} & \sigma_{l_{1}l_{2}} & \sigma_{l_{2}}^{2} & \cdots & \sigma_{l_{2}l_{N}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{xl_{N}} & \sigma_{yl_{N}} & \sigma_{\theta l_{N}} & \sigma_{l_{1}l_{N}} & \sigma_{l_{2}l_{N}} & \cdots & \sigma_{l_{N}}^{2} \end{pmatrix}$$

Can handle hundreds of dimensions

Filter Cycle, Overview:

- 1. State prediction (odometry)
- 2. Measurement prediction
- 3. Observation
- 4. Data Association
- 5. Update
- 6. Integration of new landmarks

State Prediction



Odometry: $\hat{\mathbf{x}}_{R} = f(\mathbf{x}_{R}, \mathbf{u})$

$$\hat{C}_R = F_x C_R F_x^T + F_u U F_u^T$$

Robot-landmark crosscovariance prediction:

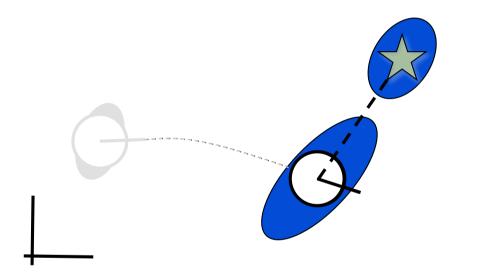
 $\hat{C}_{RM_i} = F_x \, C_{RM_i}$

(skipping time index *k*)

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix}_{k} \qquad C_{k} = \begin{bmatrix} C_{R} & C_{RM_{1}} & C_{RM_{2}} & \cdots & C_{RM_{n}} \\ C_{M_{1}R} & C_{M_{1}} & C_{M_{1}M_{2}} & \cdots & C_{M_{1}M_{n}} \\ C_{M_{2}R} & C_{M_{2}M_{1}} & C_{M_{2}} & \cdots & C_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_{n}R} & C_{M_{n}M_{1}} & C_{M_{n}M_{2}} & \cdots & C_{M_{n}} \end{bmatrix}$$

 ${m k}$

Measurement Prediction



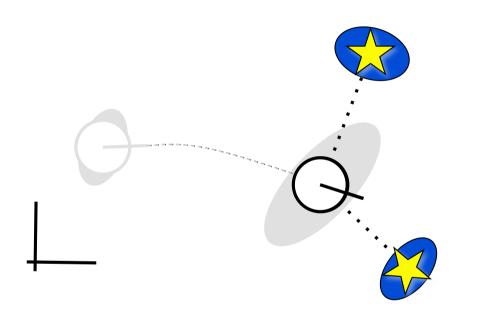
Global-to-local frame transform *h*

 $\mathbf{\hat{z}}_k = h(\mathbf{\hat{x}}_k)$

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix}_{k} \qquad C_{k} = \begin{bmatrix} C_{R} & C_{RM_{1}} & C_{RM_{2}} & \cdots & C_{RM_{n}} \\ C_{M_{1}R} & C_{M_{1}} & C_{M_{1}M_{2}} & \cdots & C_{M_{1}M_{n}} \\ C_{M_{2}R} & C_{M_{2}M_{1}} & C_{M_{2}} & \cdots & C_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_{n}R} & C_{M_{n}M_{1}} & C_{M_{n}M_{2}} & \cdots & C_{M_{n}} \end{bmatrix}_{k}$$

22

Observation



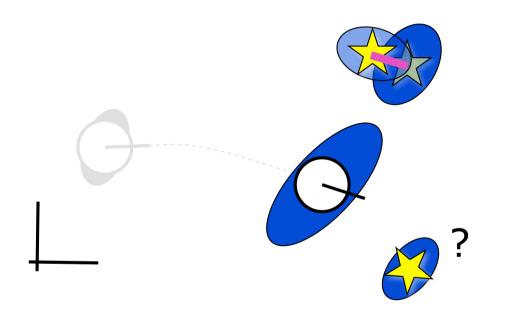
(x,y)-point landmarks

$$\mathbf{z}_{k} = \begin{bmatrix} x_{1} \\ y_{1} \\ x_{2} \\ y_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{1} \\ \mathbf{z}_{2} \end{bmatrix}$$
$$R_{k} = \begin{bmatrix} R_{1} & 0 \\ 0 & R_{2} \end{bmatrix}$$

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix}_{k} \qquad C_{k} = \begin{bmatrix} C_{R} & C_{RM_{1}} & C_{RM_{2}} & \cdots & C_{RM_{n}} \\ C_{M_{1}R} & C_{M_{1}} & C_{M_{1}M_{2}} & \cdots & C_{M_{1}M_{n}} \\ C_{M_{2}R} & C_{M_{2}M_{1}} & C_{M_{2}} & \cdots & C_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_{n}R} & C_{M_{n}M_{1}} & C_{M_{n}M_{2}} & \cdots & C_{M_{n}} \end{bmatrix}_{k}$$

23

Data Association



Associates predicted measurements $\hat{\mathbf{z}}_k^i$ with observation \mathbf{z}_k^j

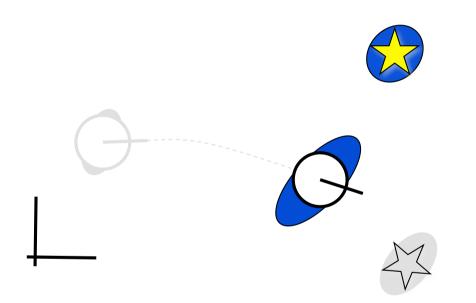
$$\begin{array}{rcl} \boldsymbol{\nu}_k^{ij} & = & \mathbf{z}_k^j - \hat{\mathbf{z}}_k^i \\ S_k^{ij} & = & R_k^j + H^i \, \hat{C}_k \, H^{i \, T} \end{array}$$

(Gating)

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix}_{k} \qquad C_{k} = \begin{bmatrix} C_{R} & C_{RM_{1}} & C_{RM_{2}} & \cdots & C_{RM_{n}} \\ C_{M_{1}R} & C_{M_{1}} & C_{M_{1}M_{2}} & \cdots & C_{M_{1}M_{n}} \\ C_{M_{2}R} & C_{M_{2}M_{1}} & C_{M_{2}} & \cdots & C_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_{n}R} & C_{M_{n}M_{1}} & C_{M_{n}M_{2}} & \cdots & C_{M_{n}} \end{bmatrix}_{k}$$

24

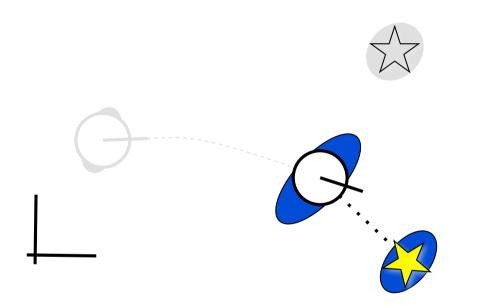
• Filter Update



The usual Kalman filter expressions $K_k = \hat{C}_k H^T S_k^{-1}$ $\mathbf{x}_k = \mathbf{\hat{x}}_k + K_k \nu_k$ $C_k = (I - K_k H) \hat{C}_k$

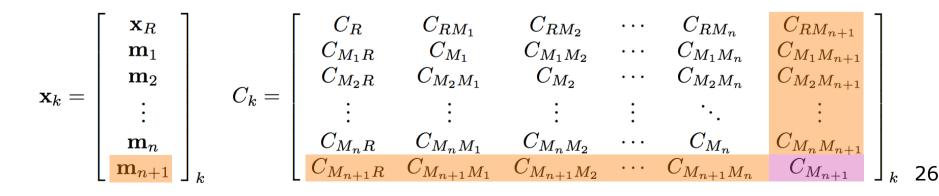
$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix}_{k} \qquad C_{k} = \begin{bmatrix} C_{R} & C_{RM_{1}} & C_{RM_{2}} & \cdots & C_{RM_{n}} \\ C_{M_{1}R} & C_{M_{1}} & C_{M_{1}M_{2}} & \cdots & C_{M_{1}M_{n}} \\ C_{M_{2}R} & C_{M_{2}M_{1}} & C_{M_{2}} & \cdots & C_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_{n}R} & C_{M_{n}M_{1}} & C_{M_{n}M_{2}} & \cdots & C_{M_{n}} \end{bmatrix}_{k}$$

Integrating New Landmarks

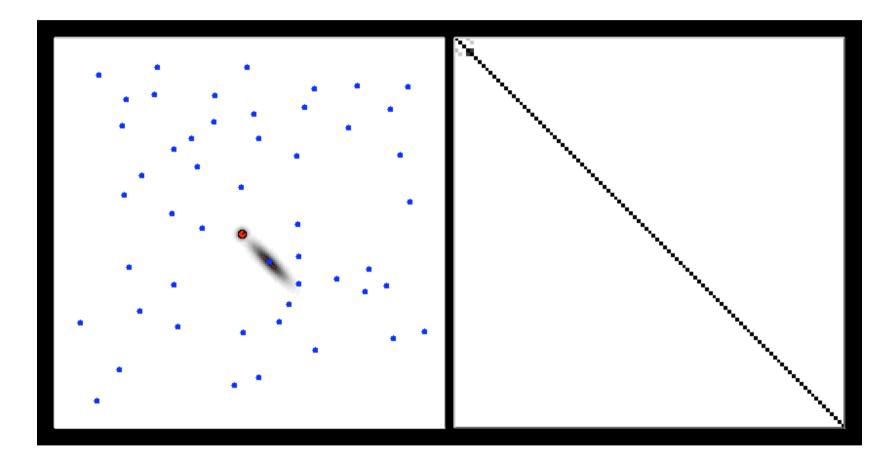


State augmented by $\mathbf{m}_{n+1} = g(\mathbf{x}_R, \mathbf{z}_j)$ $C_{M_{n+1}} = G_R C_R G_R^T + G_z R_j G_z^T$

Cross-covariances: $C_{M_{n+1}M_i} = G_R C_{RM_i}$ $C_{M_{n+1}R} = G_R C_R$

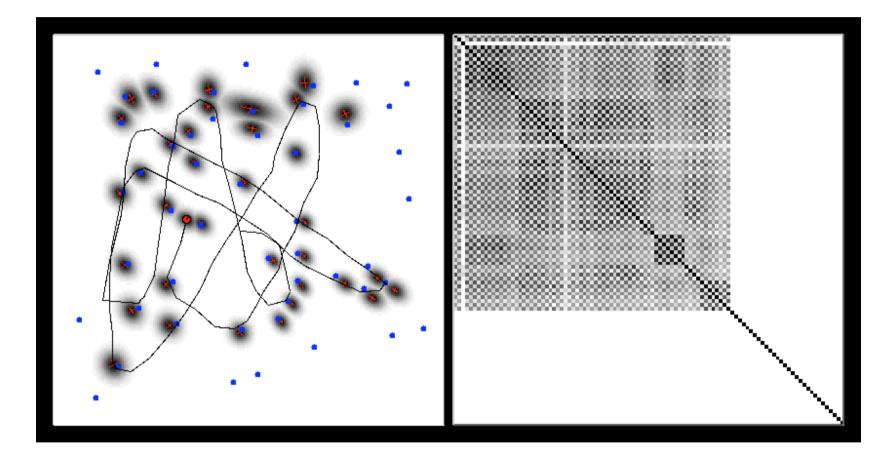


Мар



Correlation matrix

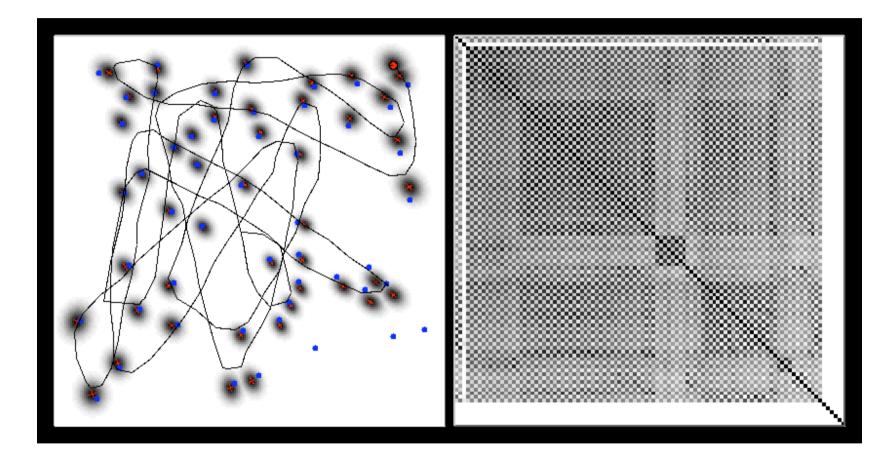
EKF SLAM



Мар

Correlation matrix

EKF SLAM



Мар

Correlation matrix

EKF SLAM: Correlations Matter

• What if we neglected cross-correlations?

$$C_{k} = \begin{bmatrix} C_{R} & 0 & \cdots & 0 \\ 0 & C_{M_{1}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{M_{n}} \end{bmatrix}_{k} C_{RM_{i}} = \mathbf{0}_{3 \times 2}$$

- → Landmark and robot uncertainties would become overly optimistic
- → Validation gates for matching too small
- → Data association would fail
- → Multiple map entries of the same landmark
- → Inconsistent map

Want to derive:

 $C_{YZ} = A \ C_{XZ}$

In words: how is the **cross-correlation** C_{XZ} between two normally distributed RVs X and Z with moments x, C_X and z, C_Z **affected** by a **linear transform** of X of the form

 $\mathbf{y} = A \mathbf{x} + B \quad \mathbf{?}$

We recall that the following holds:

 $C_Y = A \ C_X \ A^T$

We **augment** the linear mapping by the **variable of interest**

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{z} \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix}$$

Note that this implements

$$\mathbf{y} = A \mathbf{x} + B$$
$$\mathbf{z} = \mathbf{z}$$

Renaming the variables of the augmented system

$$\mathbf{x}' = [\mathbf{x} \ \mathbf{z}]^T \qquad \mathbf{y}' = [\mathbf{y} \ \mathbf{z}]^T$$

gives $\mathbf{y}' = A' \mathbf{x}' + B'$ with the augmented covariance matrices

$$C_{Y'} = \begin{bmatrix} C_Y & C_{YZ} \\ C_{ZY} & C_Z \end{bmatrix} \quad C_{X'} = \begin{bmatrix} C_X & C_{XZ} \\ C_{ZX} & C_Z \end{bmatrix}$$

The augmented covariance matrix is again given by

 $C_{Y'} = A' C_{X'} A'^T$

Resubstitution yields

$$C_{Y'} = \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} C_X & C_{XZ} \\ C_{ZX} & C_Z \end{bmatrix} \begin{bmatrix} A^T & 0 \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} AC_X & AC_{XZ} \\ C_{ZX} & C_Z \end{bmatrix} \begin{bmatrix} A^T & 0 \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} AC_X A^T & AC_{XZ} \\ C_{ZX} A^T & C_Z \end{bmatrix}$$

Thus:

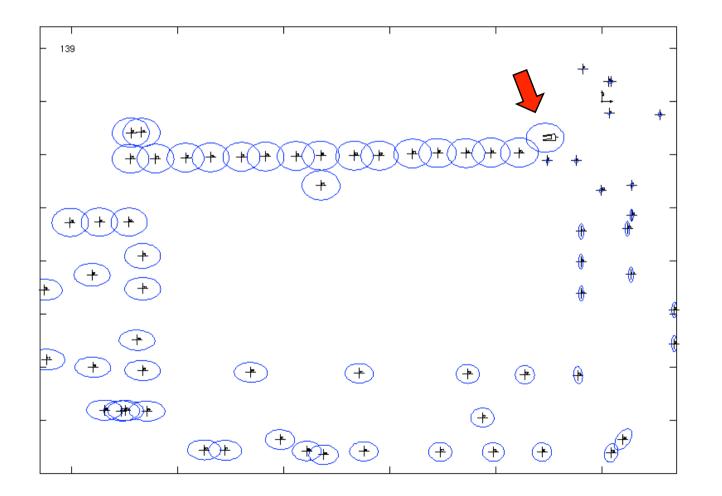
$$C_{YZ} = A \ C_{XZ}$$

SLAM: Loop Closure

- Loop closure is the problem of recognizing an already mapped area, typically after a long exploration path (the robot "closes a loop")
- Structually identical to data association, but
 - high levels of ambiguity
 - possibly useless validation gates
 - environment symmetries
- Uncertainties collapse after a loop closure (whether the closure was correct or not)

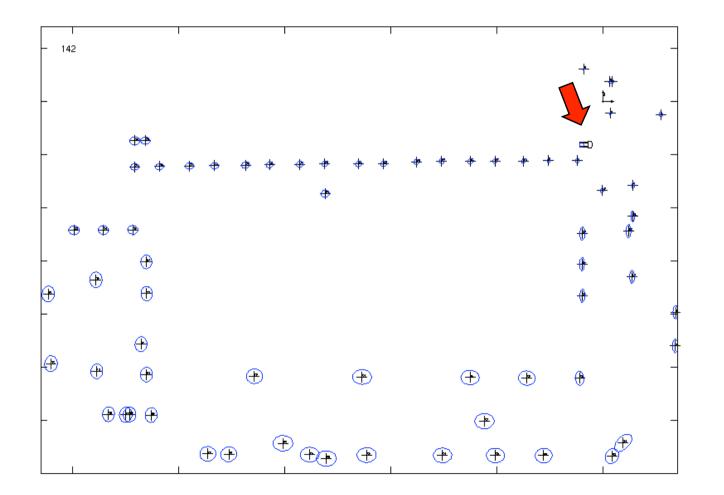
SLAM: Loop Closure

• Before loop closure



SLAM: Loop Closure

• After loop closure



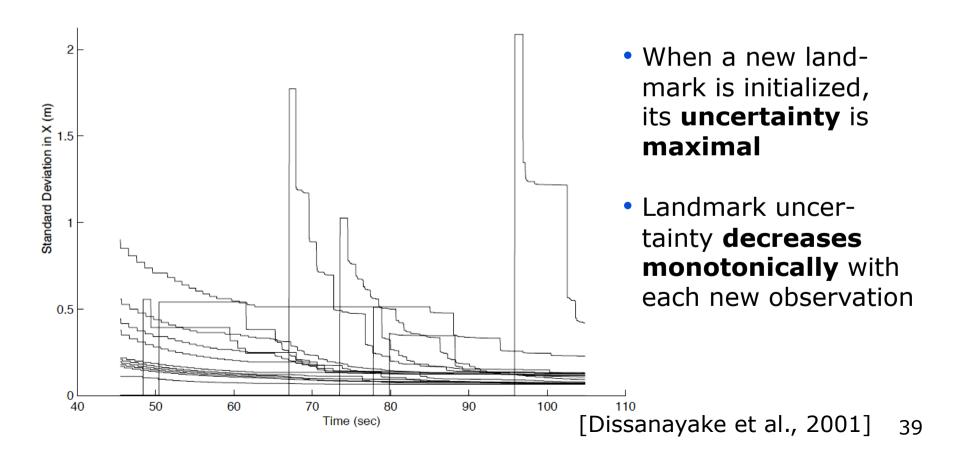
SLAM: Loop Closure

- By revisiting already mapped areas, uncertainties in robot and landmark estimates can be reduced
- This can be exploited to "optimally" explore an environment for the sake of better (e.g. more accurate) maps
- Exploration: the problem of *where* to acquire new information (e.g. depth-first vs. breadth first)

→ See separate chapter on exploration

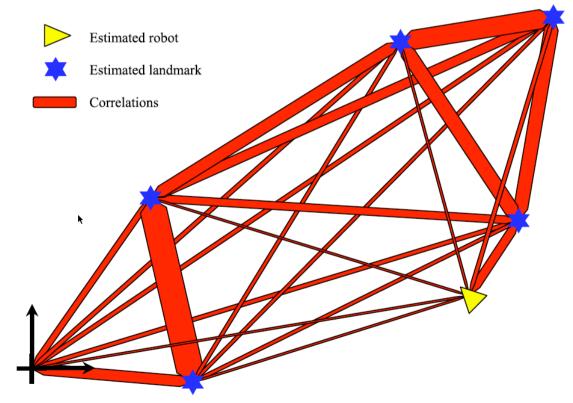
KF-SLAM Properties (Linear Case)

 The determinant of any sub-matrix of the map covariance matrix decreases monotonically as successive observations are made



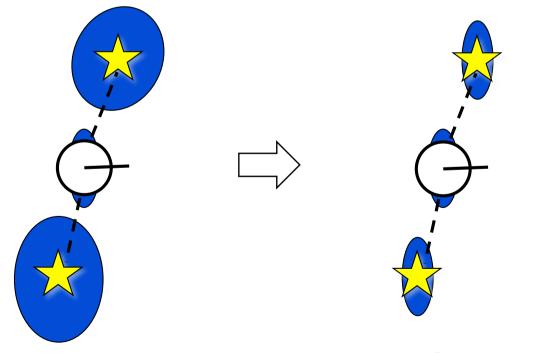
KF-SLAM Properties (Linear Case)

 In the limit, the landmark estimates become fully correlated



KF-SLAM Properties (Linear Case)

 In the limit, the covariance associated with any single landmark location estimate is determined only by the initial covariance in the vehicle location estimate.



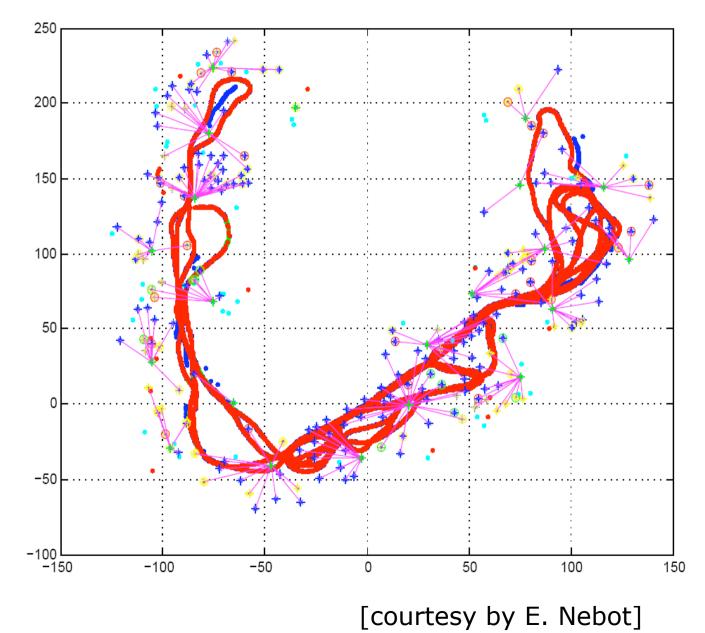
EKF SLAM Example: Victoria Park

Syndey, Australia

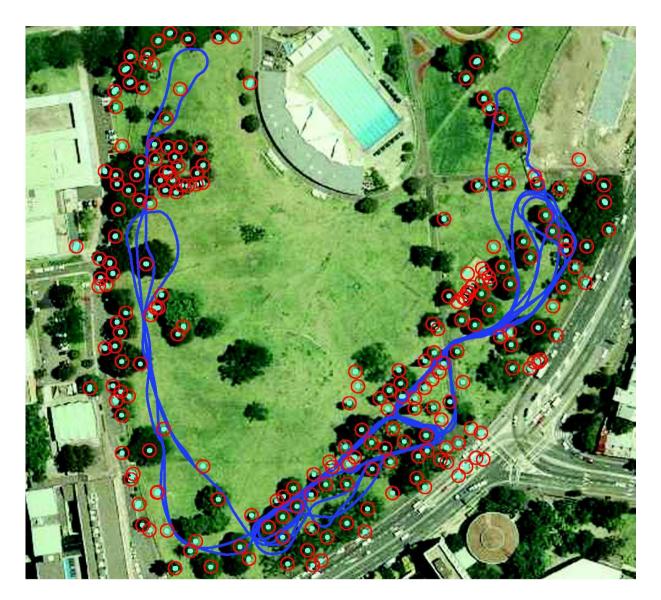
Victoria Park: Data Acquisition

[courtesy by E. Nebot]

Victoria Park: Estimated Trajectory



Victoria Park: Landmarks

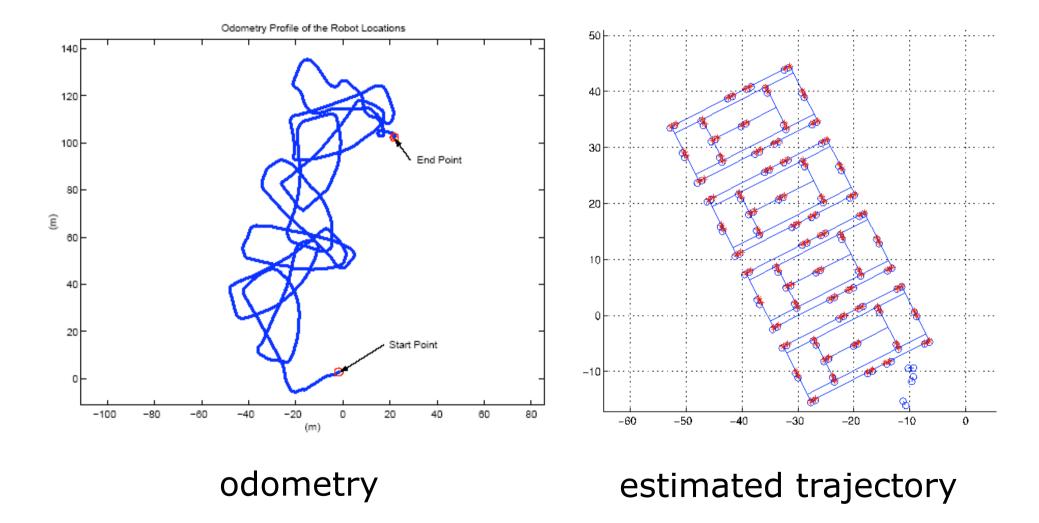


[courtesy by E. Nebot]

EKF SLAM Example: Tennis Court

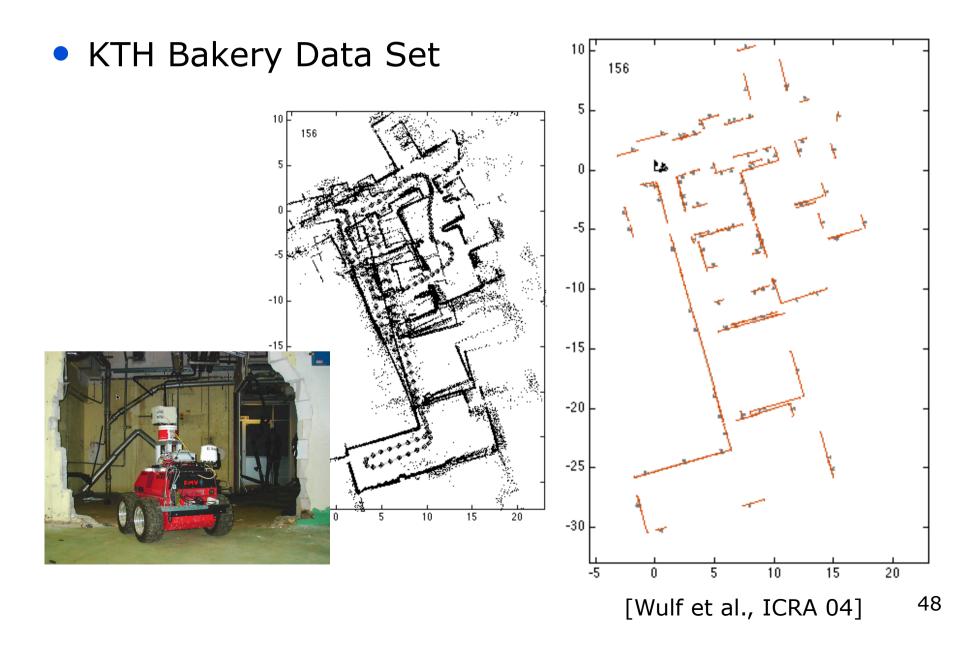
[courtesy by J. Leonard] ⁴⁶

EKF SLAM Example: Tennis Court



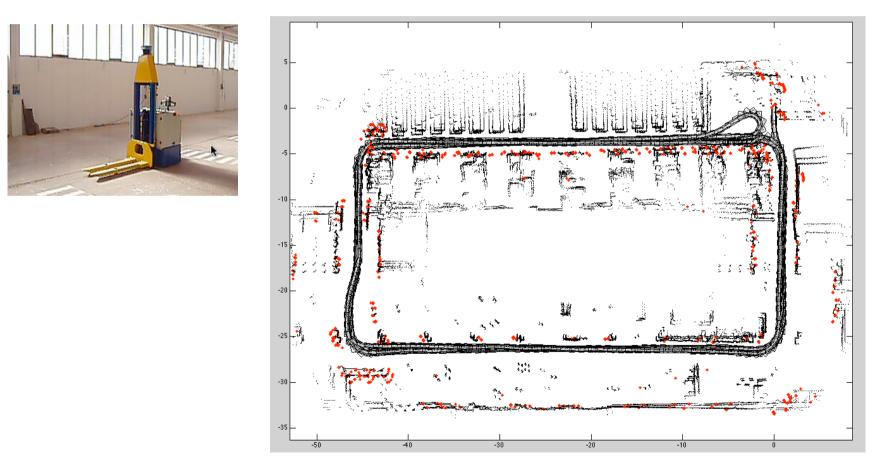
[courtesy by John Leonard] 47

EKF SLAM Example: Line Features



EKF SLAM Example: AGV

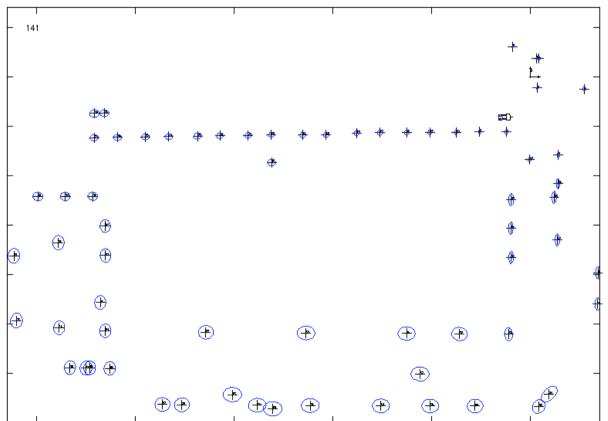
 Pick-and-Place AGV at Geiger AG, Ludwigsburg (Project by LogObject/Nurobot)



[courtesy by LogObject/Nurobot]

EKF SLAM Example: AGV

 Pick-and-Place AGV at Geiger AG, Ludwigsburg (Project by LogObject/Nurobot)



EKF-SLAM: Complexity

- Cost per step: quadratic in n, the number of landmarks: O(n²)
- Total cost to build a map with n landmarks:
 O(n³)
- **Memory**: *O*(*n*²)

Problem: becomes computationally intractable for large maps!

→ Approaches exist that make EKF-SLAM amortized O(n) / O(n²) / O(n²) D&C SLAM [Paz et al., 2006]

SLAM Techniques

- EKF SLAM
- FastSLAM
- Graphical SLAM
- Topological SLAM (mainly place recognition)
- Scan Matching / Visual Odometry (only locally consistent maps)
- Approximations for SLAM: Local submaps, Sparse extended information filters, Sparse links, Thin junction tree filters, etc.

EKF-SLAM: Summary

- **Convergence proof** for linear case!
- **Can diverge** if nonlinearities are large (and the reality **is** nonlinear...)
- First-order error propagation becomes a problem. Uncertainties large with respect to the degree of non-linearity
- Has been successfully applied in mediumscale environments
- Approximations reduce the computational complexity

Approximations for SLAM

Local submaps

[Leonard et al.99, Bosse et al. 02, Newman et al. 03]

• Sparse links (correlations) [Lu & Milios 97, Guivant & Nebot 01]

• Sparse extended information filters [Frese et al. 01, Thrun et al. 02]

• Thin junction tree filters [Paskin 03]

Rao-Blackwellisation (FastSLAM) [Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]