
Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras 

SLAM: Simultaneous Localization 
and Mapping 

Introduction to 
Mobile Robotics 

Slides by Kai Arras and Wolfram Burgard 

Last update: June 2010 



The SLAM Problem 

 SLAM is the process by which a robot builds 
a map of the environment and, at the same 
time, uses this map to compute its location 

•  Localization: inferring location given a map  
•  Mapping: inferring a map given a location 
•  SLAM: learning a map and locating the robot 

simultaneously 
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The SLAM Problem 

•  SLAM is a chicken-or-egg problem: 
→  A map is needed for localizing a robot 

→  A pose estimate is needed to build a map 

• Thus, SLAM is (regarded as) a hard problem in 
robotics 
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•  SLAM is considered one of the most 
fundamental problems for robots to become 
truly autonomous 

•  A variety of different approaches to address the 
SLAM problem have been presented 

•  Probabilistic methods rule 

•  History of SLAM dates back to the mid-eighties 
(stone-age of mobile robotics) 

The SLAM Problem 
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 Given: 

•  The robot’s controls 

•  Relative observations 

 Wanted: 

•  Map of features 

•  Path of the robot 

The SLAM Problem 



The SLAM Problem 
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•  Absolute 
robot pose 

•  Absolute 
landmark positions 

•  But only relative 
measurements of 
landmarks 



SLAM Applications 

SLAM is central to a range of indoor, 
outdoor, in-air and underwater applications 
for both manned and autonomous vehicles. 

Examples: 

• At home: vacuum cleaner, lawn mower 
• Air: surveillance with unmanned air vehicles 
• Underwater: reef monitoring 
• Underground: exploration of abandoned mines 
• Space: terrain mapping for localization 
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SLAM Applications 

Indoors 

Space 

Undersea 

Underground 
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Map Representations 

Examples: 
Subway map, city map, landmark-based map 

Maps are topological and/or metric 
models of the environment 
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Map Representations 

•  Grid maps or scans, 2d, 3d 

 [Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 
99; Haehnel, 01;…] 

•  Landmark-based 

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;… 
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Why is SLAM a hard problem? 

1. Robot path and map are both unknown  

2. Errors in map and pose estimates correlated 
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Why is SLAM a hard problem? 

•  In the real world, the mapping between 
observations and landmarks is unknown 
(origin uncertainty of measurements) 

•  Data Association: picking wrong data 
associations can have catastrophic 
consequences (divergence) 

Robot pose 
uncertainty 
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SLAM:  
Simultaneous Localization And Mapping 

•  Full SLAM: 

•  Online SLAM: 

Integrations (marginalization) typically done 
recursively, one at a time 

€ 

p(x0:t ,m | z1:t ,u1:t )

  

€ 

p(xt ,m | z1:t ,u1:t ) = … p(x1:t ,m | z1:t ,u1:t ) dx1∫∫∫ dx2...dxt−1

Estimates most recent pose and map! 

Estimates entire path and map! 
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Graphical Model of Full SLAM  

),|,( :1:1:1 ttt uzmxp
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Graphical Model of Online SLAM  

121:1:1:1:1:1 ...),|,(),|,( −∫ ∫ ∫= ttttttt dxdxdxuzmxpuzmxp …
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Graphical Model: Models 

"Motion model" 

"Observation model" 
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Remember? KF Algorithm  

1.   Algorithm Kalman_filter(µt-1, Σt-1, ut, zt): 

2.   Prediction: 
3.         
4.     

5.   Correction: 
6.         
7.    
8.    

9.   Return µt, Σt       

ttttt uBA += −1µµ

t
T
tttt RAA +Σ=Σ −1

1)( −+ΣΣ= t
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ttt

T
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EKF SLAM: State representation 

•  Localization 

 3x1 pose vector 
 3x3 cov. matrix 

•  SLAM 

 Landmarks are simply added to the state.  
 Growing state vector and covariance matrix! 

18 



  

€ 

Bel(xt ,mt ) =

x
y
θ

l1
l2


lN

 

 

 
 
 
 
 
 
 
  

 

 

 
 
 
 
 
 
 
  

  ,   

σ x
2 σ xy σ xθ σ xl1

σ xl2
 σ xlN

σ xy σ y
2 σ yθ σ yl1

σ yl2
 σ ylN

σ xθ σ yθ σθ
2 σθl1

σθl2
 σθlN

σ xl1
σ yl1

σθl1
σ l1

2 σ l1l2
 σ l1lN

σ xl2
σ yl2

σθl2
σ l1l2

σ l2
2
 σ l2lN

      

σ xlN
σ ylN

σθlN
σ l1lN

σ l2lN
 σ lN

2

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

•  Map with n landmarks: (3+2n)-dimensional 
Gaussian 

•  Can handle hundreds of dimensions 
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EKF SLAM: State representation 



EKF SLAM: Building the Map 

Filter Cycle, Overview: 

1. State prediction (odometry) 

2. Measurement prediction 

3. Observation 

4. Data Association 

5. Update 

6. Integration of new landmarks 
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•  State Prediction 

EKF SLAM: Building the Map 
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Odometry: 

(skipping time index k) 

Robot-landmark cross-
covariance prediction: 



EKF SLAM: Building the Map 

•  Measurement Prediction 
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Global-to-local 
frame transform h 



•  Observation 

EKF SLAM: Building the Map 
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(x,y)-point landmarks 



Associates predicted 
measurements 
with observation 

•  Data Association 

EKF SLAM: Building the Map 
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? (Gating) 



EKF SLAM: Building the Map 

•  Filter Update 
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The usual Kalman 
filter expressions  



•  Integrating New Landmarks 

EKF SLAM: Building the Map 
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State augmented by 

Cross-covariances: 
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EKF SLAM 

Map              Correlation matrix 
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EKF SLAM 

Map              Correlation matrix 
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EKF SLAM 

Map              Correlation matrix 



EKF SLAM: Correlations Matter 

•  What if we neglected cross-correlations? 

→ Landmark and robot uncertainties would 
become overly optimistic 

→ Validation gates for matching too small 
→ Data association would fail 
→ Multiple map entries of the same landmark 
→ Inconsistent map 
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Error Propagation (cont.) 

Want to derive: 

In words: how is the cross-correlation CXZ between 
two normally distributed RVs X and Z with moments 
x, CX and z, CZ affected by a linear transform of X 
of the form 

We recall that the following holds: 
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? 



Error Propagation (cont.) 

We augment the linear mapping by the variable 
of interest 

Note that this implements 
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Error Propagation (cont.) 

Renaming the variables of the augmented system 

gives                         with the augmented 
covariance matrices 

The augmented covariance matrix is again given by 
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Error Propagation (cont.) 

Resubstitution yields 

Thus: 
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SLAM: Loop Closure 

•  Loop closure is the problem of recognizing an 
already mapped area, typically after a long 
exploration path (the robot "closes a loop") 

•  Structually identical to data association, but 
•  high levels of ambiguity 
•  possibly useless validation gates 
•  environment symmetries 

•  Uncertainties collapse after a loop closure 
(whether the closure was correct or not) 
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SLAM: Loop Closure 

•  Before loop closure 

36 



SLAM: Loop Closure 

•  After loop closure 
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SLAM: Loop Closure 

•  By revisiting already mapped areas, uncertain-
ties in robot and landmark estimates can be 
reduced 

•  This can be exploited to "optimally" explore 
an environment for the sake of better (e.g. 
more accurate) maps 

•  Exploration: the problem of where to acquire 
new information (e.g. depth-first vs. breadth 
first) 

→  See separate chapter on exploration 
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•  The determinant of any sub-matrix of the map 
covariance matrix decreases monotonically as 
successive observations are made 
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KF-SLAM Properties (Linear Case) 

[Dissanayake et al., 2001] 

• When a new land-
mark is initialized, 
its uncertainty is 
maximal 

•  Landmark uncer-
tainty decreases 
monotonically with 
each new observation 



•  In the limit, the landmark estimates become 
fully correlated 
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KF-SLAM Properties (Linear Case) 

[Dissanayake et al., 2001] 



•  In the limit, the covariance associated with any 
single landmark location estimate is determined 
only by the initial covariance in the vehicle 
location estimate. 
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KF-SLAM Properties (Linear Case) 

[Dissanayake et al., 2001] 
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EKF SLAM Example: Victoria Park 
Syndey, Australia 
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Victoria Park: Data Acquisition 

[courtesy by E. Nebot] 
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Victoria Park: Estimated Trajectory 

[courtesy by E. Nebot] 
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Victoria Park: Landmarks 

[courtesy by E. Nebot] 
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EKF SLAM Example: Tennis Court 

[courtesy by J. Leonard] 
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EKF SLAM Example: Tennis Court 

odometry estimated trajectory 

[courtesy by John Leonard] 



EKF SLAM Example: Line Features 

•  KTH Bakery Data Set 

48 [Wulf et al., ICRA 04] 



EKF SLAM Example: AGV 

•  Pick-and-Place AGV at Geiger AG, Ludwigsburg 
(Project by LogObject/Nurobot) 

49 [courtesy by LogObject/Nurobot] 



EKF SLAM Example: AGV 

•  Pick-and-Place AGV at Geiger AG, Ludwigsburg 
(Project by LogObject/Nurobot) 

50 [courtesy by LogObject/Nurobot] 
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EKF-SLAM: Complexity 

•  Cost per step: quadratic in n, the number of 
landmarks: O(n2) 

•  Total cost to build a map with n landmarks: 
O(n3) 

•  Memory: O(n2) 

Problem: becomes computationally intractable 
for large maps! 

 Approaches exist that make EKF-SLAM 
amortized O(n) / O(n2) / O(n2) 
D&C SLAM [Paz et al., 2006] 
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SLAM Techniques 

•  EKF SLAM 

•  FastSLAM 

•  Graphical SLAM 

•  Topological SLAM 
(mainly place recognition) 

•  Scan Matching / Visual Odometry 
(only locally consistent maps) 

•  Approximations for SLAM: Local submaps, 
Sparse extended information filters, Sparse 
links, Thin junction tree filters, etc. 
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EKF-SLAM: Summary 

•  Convergence proof for linear case!  

•  Can diverge if nonlinearities are large 
(and the reality is nonlinear...) 

•  First-order error propagation becomes a 
problem. Uncertainties large with respect to 
the degree of non-linearity 

•  Has been successfully applied in medium-
scale environments 

•  Approximations reduce the computational 
complexity 
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•  Local submaps  
[Leonard et al.99, Bosse et al. 02, Newman et al. 03] 

•  Sparse links (correlations)  
[Lu & Milios 97, Guivant & Nebot 01] 

•  Sparse extended information filters  
[Frese et al. 01, Thrun et al. 02] 

•  Thin junction tree filters  
[Paskin 03] 

•  Rao-Blackwellisation (FastSLAM)  
[Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03] 

Approximations for SLAM 


