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SLAM stands for simultaneous localization and 
mapping

The task of building a map while estimating 
the pose of the robot relative to this map

Why is SLAM hard?
Chicken-or-egg problem: 

a map is needed to localize the robot and 

a pose estimate is needed to build a map

The SLAM Problem
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Given:
The robot’s 
controls

Observations of 
nearby features

Estimate:
Map of features

Path of the robot

The SLAM Problem

A robot moving though an unknown, static environment
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Typical models are:
Feature maps

Grid maps (occupancy or reflection probability 
maps)

Map Representations

today
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Why is SLAM a hard problem?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map
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Why is SLAM a hard problem?

In the real world, the mapping between 
observations and landmarks is unknown
Picking wrong data associations can have 
catastrophic consequences
Pose error correlates data associations

Robot pose
uncertainty
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Data Association Problem

A data association is an assignment of 
observations to landmarks
In general there are more than 
(n observations, m landmarks) possible 
associations
Also called “assignment problem”
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Represent belief by random samples

Estimation of non-Gaussian, nonlinear processes

Sampling Importance Resampling (SIR) principle

Draw the new generation of particles

Assign an importance weight to each particle

Resampling

Typical application scenarios are 
tracking, localization, …

Particle Filters
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A particle filter can be used to solve both problems

Localization: state space < x, y, θ>

SLAM: state space < x, y, θ, map>
for landmark maps = < l1, l2, …, lm>
for grid maps = < c11, c12, …, c1n, c21, …, cnm>

Problem: The number of particles needed to 
represent a posterior grows exponentially with 
the dimension of the state space!

Localization vs. SLAM
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Is there a dependency between the dimensions of 
the state space?

If so, can we use the dependency to solve the 
problem more efficiently?

Dependencies 
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Is there a dependency between the dimensions of 
the state space?

If so, can we use the dependency to solve the 
problem more efficiently?

In the SLAM context

The map depends on the poses of the robot.

We know how to build a map given the position 
of the sensor is known.

Dependencies
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Factored Posterior (Landmarks)

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Factored Posterior (Landmarks)

SLAM posterior
Robot path posterior

landmark positions

Factorization first introduced by Murphy in 1999

Does this help to solve the problem?

poses map observations & movements
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Knowledge of the robot’s true path renders 
landmark positions conditionally independent

Mapping using Landmarks

. . .

Landmark 1

observations

Robot poses

controls

x1 x2 xt

u1 ut-1

l2

l1

z1

z2

x3

u1

z3

zt

Landmark 2

x0

u0 
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Factored Posterior

Robot path posterior
(localization problem) Conditionally 

independent 
landmark positions
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Rao-Blackwellization

This factorization is also called Rao-Blackwellization

Given that the second term can be computed 
efficiently, particle filtering becomes possible!
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FastSLAM
Rao-Blackwellized particle filtering based on 
landmarks     [Montemerlo et al., 2002]

Each landmark is represented by a 2x2 
Extended Kalman Filter (EKF)

Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M…x, y, θ

Landmark 1 Landmark 2 Landmark M…x, y, θParticle
#1

Landmark 1 Landmark 2 Landmark M…x, y, θParticle
#2

Particle
N

…
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FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM  - Video
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FastSLAM  Complexity

Update robot particles based on 
control ut-1

Incorporate observation zt into 
Kalman filters

Resample particle set

N = Number of particles
M = Number of map features

O(N)
Constant time 

per particle

O(N•log(M))
Log time per particle

O(N•log(M))

O(N•log(M))
Log time per particle

Log time per particle
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Data Association Problem

A robust SLAM must consider possible data 
associations 
Potential data associations depend also 
on the pose of the robot 

Which observation belongs to which landmark?
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Multi-Hypothesis Data Association

Data association is done 
on a per-particle basis

Robot pose error is 
factored out of data 
association decisions
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Per-Particle Data Association

Was the observation
generated by the red
or the brown landmark?

P(observation|red) = 0.3 P(observation|brown) = 0.7

Two options for per-particle data association
Pick the most probable match
Pick an random association weighted by 
the observation likelihoods

If the probability is too low, generate a new 
landmark
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Results – Victoria Park

4 km traverse
< 5 m RMS 
position error
100 particles

Dataset courtesy of University of Sydney

Blue = GPS
Yellow = FastSLAM
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Results – Victoria Park (Video)

Dataset courtesy of University of Sydney
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Results – Data Association
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FastSLAM Summary

FastSLAM factors the SLAM posterior into low-
dimensional estimation problems

Scales to problems with over 1 million features

FastSLAM factors robot pose uncertainty out of 
the data association problem

Robust to significant ambiguity in data association
Allows data association decisions to be delayed until 
unambiguous evidence is collected

Advantages compared to the classical EKF 
approach
Complexity of O(N logM)
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