
Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Robot Motion Planning

Introduction to
Mobile Robotics

Slides by Kai Arras Last update July 2011

With material from S. LaValle, JC. Latombe, H. Choset et al., W. Burgard

Robot Motion Planning

Contents

  Introduction
  Configuration Space
  Combinatorial Planning
  Sampling-Based Planning
  Potential Fields Methods
  A*, Any-Angle A*, D*/D* Lite
  Dynamic Window Approach (DWA)
  Markov Decision Processes (MDP)

2

Robot Motion Planning

J.-C. Latombe (1991):

“…eminently necessary since, by definition,
a robot accomplishes tasks by moving in
the real world.”

Goals
  Collision-free trajectories
  Robot should reach the goal location

as fast as possible

3

Problem Formulation

  The problem of motion planning can be
stated as follows. Given:

  A start pose of the robot
  A desired goal pose
  A geometric description of the robot
  A geometric description of the world

  Find a path that moves the robot
gradually from start to goal while
never touching any obstacle

4

Problem Formulation

Motion planning is sometimes also called piano mover's problem
5

Configuration Space

  Although the motion planning problem is
defined in the regular world, it lives in
another space: the configuration space

  A robot configuration q is a specification of
the positions of all robot points relative to
a fixed coordinate system

  Usually a configuration is expressed as a
vector of positions and orientations

6

Configuration Space

Rigid-body robot example

  3-parameter representation: q = (x,y,θ)
  In 3D, q would be of the form (x,y,z,α,β,γ)

7

Reference point

x

y
θ

Robot

Reference direction

Configuration Space

Articulated robot example

8

q = (q1,q2,...,q10)

Configuration Space

  The configuration space (C-space) is the
space of all possible configurations

  The topology of this space is usually not
that of a Cartesian space

  The C-space is described as a topological
manifold

  Example:

9

wraps horizontally
and vertically!

Configuration Space

  Example: circular robot

  C-space is obtained by sliding the robot
along the edge of the obstacle regions
"blowing them up" by the robot radius

10

Configuration Space

  Example: polygonal robot, translation only

  C-space is obtained by sliding the robot
along the edge of the obstacle regions

11

Configuration Space

  Example: polygonal robot, translation only

  C-space is obtained by sliding the robot
along the edge of the obstacle regions

12

Configuration space Work space

Reference point

Configuration Space

  Example: polygonal robot, trans+rotation

  C-space is obtained by sliding the robot
along the edge of the obstacle regions
in all orientations

13

Configuration Space

Free space and obstacle region

  With being the work space,
the set of obstacles, the robot in
configuration

  We further define
  : start configuration
  : goal configuration

14

Then, motion planning amounts to

  Finding a continuous path

 with

  Given this setting,
we can do planning
with the robot being
a point in C-space!

Configuration Space

15

C-Space Discretizations

  Continuous terrain needs to be
discretized for path planning

  There are two general approaches
to discretize C-spaces:

  Combinatorial planning
 Characterizes Cfree explicitely by capturing the
connectivity of Cfree into a graph and finds
solutions using search

  Sampling-based planning
 Uses collision-detection to probe and
incrementally search the C-space for solution

16

Combinatorial Planning

  We will look at four combinatorial
planning techniques

  Visibility graphs
  Voronoi diagrams
  Exact cell decomposition
  Approximate cell decomposition

  They all produce a road map
  A road map is a graph in Cfree in which each

vertex is a configuration in Cfree and each edge
is a collision-free path through Cfree

17

Combinatorial Planning

  Without loss of generality, we will consider
a problem in with a point robot
that cannot rotate. In this case:

  We further assume a polygonal world

18

qI

qG

qI

qG

  Idea: construct a path as a polygonal line
connecting qI and qG through vertices of Cobs

  Existence proof for such paths, optimality
  One of the earliest path planning methods

  Best algorithm: O(n2 log n)

Visibility Graphs

19

qI

qG

  Defined to be the set of points q whose
cardinality of the set of boundary points of
Cobs with the same distance to q is greater
than 1

  Let us decipher
this definition...

  Informally:
the place with the
same maximal
clearance from
all nearest obstacles

Generalized Voronoi Diagram

20

qI
qG

qI' qG'

  Formally:
Let be the boundary of Cfree, and d(p,q)
the Euclidian distance between p and q. Then, for
all q in Cfree, let

be the clearance of q, and

the set of "base" points on β with the same
clearance to q. The Voronoi diagram is then the
set of q's with more than one base point p

Generalized Voronoi Diagram

21

  Geometrically:

  For a polygonal Cobs, the Voronoi diagram
consists of (n) lines and parabolic segments

  Naive algorithm: O(n4), best: O(n log n)

Generalized Voronoi Diagram

22

p

clearance(q)

one closest point
q

q
q

p
p

two closest points

p p

Voronoi Diagram

  Voronoi diagrams have been well studied
for (reactive) mobile robot path planning

  Fast methods exist to compute and update
the diagram in real-time for low-dim. C's

  Pros: maximize clear-
ance is a good idea for
an uncertain robot

  Cons: unnatural at-
traction to open space,
suboptimal paths

  Needs extensions
23

Exact Cell Decomposition

  Idea: decompose Cfree into non-overlapping
cells, construct connectivity graph to
represent adjacencies, then search

  A popular implementation of this idea:

1.  Decompose Cfree into trapezoids with vertical
side segments by shooting rays upward and
downward from each polygon vertex

2.  Place one vertex in the interior of every
trapezoid, pick e.g. the centroid

3.  Place one vertex in every vertical segment
4.  Connect the vertices

24

Exact Cell Decomposition

  Trapezoidal decomposition (max)

  Best known algorithm: O(n log n) where n is
the number of vertices of Cobs

25

(a)

(b)

(c)

(d)

Approximate Cell Decomposition

  Exact decomposition methods can be invol-
ved and inefficient for complex problems

  Approximate decomposition uses cells with
the same simple predefined shape

26

qI qI
qG qG

Quadtree decomposition

Approximate Cell Decomposition

  Exact decomposition methods can be invol-
ved and inefficient for complex problems

  Approximate decomposition uses cells with
the same simple predefined shape

  Pros:
  Iterating the same simple computations
  Numerically more stable
  Simpler to implement
  Can be made complete

27

Combinatorial Planning

Wrap Up
  Combinatorial planning techniques are

elegant and complete (they find a
solution if it exists, report failure otherwise)

  But: become quickly intractable when
C-space dimensionality increases (or n resp.)

  Combinatorial explosion in terms of
facets to represent , , and ,
especially when rotations bring in non-
linearities and make C a nontrivial manifold

 ➡ Use sampling-based planning
 Weaker guarantees but more efficient

28

Sampling-Based Planning

  Abandon the concept of explicitly
characterizing Cfree and Cobs and leave the
algorithm in the dark when exploring Cfree

  The only light is provided by a collision-
detection algorithm, that probes C to
see whether some configuration lies in Cfree

  We will have a look at
  Probabilistic road maps (PRM)

[Kavraki et al., 92]

  Rapidly exploring random trees (RRT)
[Lavalle and Kuffner, 99]

29

Probabilistic Road Maps

  Idea: Take random samples from C,
declare them as vertices if in Cfree, try to
connect nearby vertices with local planner

  The local planner checks if line-of-sight is
collision-free (powerful or simple methods)

  Options for nearby: k-nearest neighbors
or all neighbors within specified radius

  Configurations and connections are added
to graph until roadmap is dense enough

30

Probabilistic Road Maps

  Example

31

specified radius

Example local planner

What means "nearby" on a manifold?
Defining a good metric on C is crucial

Probabilistic Road Maps

Good and bad news:

  Pros:
  Probabilistically complete
  Do not construct C-space
  Apply easily to high-dim. C's
  PRMs have solved previously

unsolved problems

  Cons:
  Do not work well for some

problems, narrow passages
  Not optimal, not complete

32

Cobs

Cobs

Cobs

Cobs Cobs

Cobs Cobs

qI

qG

qI

qG

Probabilistic Road Maps

  How to uniformly sample C ? This is not
at all trivial given its topology

  For example over spaces of rotations:
Sampling Euler angles gives samples near
poles, not uniform over SO(3). Use
quaternions!

  However, PRMs are powerful, popular
and many extensions exist: advanced
sampling strategies (e.g. near obstacles),
PRMs for deformable objects, closed-
chain systems, etc.

33

Rapidly Exploring Random Trees

  Idea: aggressively probe and explore the
C-space by expanding incrementally
from an initial configuration q0

  The explored territory is marked by a
tree rooted at q0

34

45 iterations 2345 iterations

RRTs

  The algorithm: Given C and q0

35

Sample from a bounded
region centered around q0

E.g. an axis-aligned
relative random translation
or random rotation

(but recall sampling over
rotation spaces problem)

RRTs

  The algorithm

36

Finds closest vertex in G
using a distance function

formally a metric
defined on C

RRTs

  The algorithm

37

Several stategies to find
qnear given the closest
vertex on G:

•  Take closest vertex
•  Check intermediate

points at regular intervals
and split edge at qnear

RRTs

  The algorithm

38

Connect nearest point
with random point using
a local planner that
travels from qnear to qrand
•  No collision: add edge

•  Collision: new vertex is
qi, as close as possible
to Cobs

RRTs

  The algorithm

39

Connect nearest point
with random point using
a local planner that
travels from qnear to qrand
•  No collision: add edge

•  Collision: new vertex is
qi, as close as possible
to Cobs

RRTs

  How to perform path planning with RRTs?

1.  Start RRT at qI

2.  At every, say, 100th iteration, force qrand = qG
3.  If qG is reached, problem is solved

  Why not picking qG every time?

  This will fail and waste much effort in
running into CObs instead of exploring
the space

40

RRTs

  However, some problems require more
effective methods: bidirectional search

  Grow two RRTs, one from qI, one from qG

  In every other
step, try to
extend each
tree towards
the newest
vertex of the
other tree

41

Filling a well A bug trap

RRTs

  RRTs are popular, many extensions exist:
real-time RRTs, anytime
RRTs, for dynamic
environments etc.

  Pros:
  Balance between greedy

search and exploration
  Easy to implement

  Cons:
  Metric sensivity
  Unknown rate of convergence

42

Alpha 1.0 puzzle.
Solved with

bidirectional RRT

From Road Maps to Paths

  All methods discussed so far construct a
road map (without considering the query
pair qI and qG)

  Once the investment is made, the same
road map can be reused for all queries
(provided world and robot do not change)

1.   Find the cell/vertex that contain/is close to qI
and qG (not needed for visibility graphs)

2.   Connect qI and qG to the road map

3.   Search the road map for a path from qI to qG
43

Sampling-Based Planning

Wrap Up

  Sampling-based planners are more efficient in
most practical problems but offer weaker
guarantees

  They are probabilistically complete: the
probability tends to 1 that a solution is found if
one exists (otherwise it may still run forever)

  Performance degrades in problems with narrow
passages. Subject of active research

  Widely used. Problems with high-dimensional
and complex C-spaces are still computationally
hard

44

Potential Field Methods

  All techniques discussed so far aim at cap-
turing the connectivity of Cfree into a graph

  Potential Field methods follow a
different idea:

 The robot, represented as a point in C, is
modeled as a particle under the influence
of a artificial potential field U

 U superimposes
  Repulsive forces from obstacles
  Attractive force from goal

45

Potential Field Methods

  Potential function

  Simply perform gradient descent
  C-pace typically discretized in a grid

46

+ =

Potential Field Methods

  Main problems: robot gets stuck in
local minima

  Way out: Construct local-minima-free
navigation function ("NF1"), then do
gradient descent (e.g. bushfire from goal)

  The gradient of the potential function
defines a vector field (similar to a policy)
that can be used as feedback control
strategy, relevant for an uncertain robot

  However, potential fields need to represent
Cfree explicitely. This can be too costly.

47

Robot Motion Planning

  Given a road map, let's do search!

48

From A
to B?

A* Search

  A* is one of the most widely-known
informed search algorithms with many
applications in robotics

  Where are we?
A* is an instance of an informed
algorithm for the general problem of
search

  In robotics: planning on a
2D occupancy grid map is
a common approach

49

Search

The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

  Uninformed search: besides the problem
definition, no further information about the
domain ("blind search")

  The only thing one can do is to expand
nodes differently

  Example algorithms: breadth-first,
uniform-cost, depth-first, bidirectional, etc.

  Informed search: f

50

Search

The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

  Informed search: further information
about the domain through heuristics

  Capability to say that a node is "more
promising" than another node

  Example algorithms: greedy best-first
search, A*, many variants of A*, D*, etc.

51

Search

The performance of a search algorithm is
measured in four ways:

  Completeness: does the algorithm find
the solution when there is one?

  Optimality: is the solution the best one of
all possible solutions in terms of path cost?

  Time complexity: how long does it take
to find a solution?

  Space complexity: how much memory is
needed to perform the search?

52

Uninformed Search

  Breadth-first
  Complete
  Optimal if action costs equal
  Time and space: O(bd)

  Depth-first
  Not complete in infinite spaces
  Not optimal
  Time: O(bm)
  Space: O(bm) (can forget

explored subtrees)

(b: branching factor, d: goal depth, m: max. tree depth)
53

Breadth-First Example

54

Informed Search

  Nodes are selected for expansion based on
an evaluation function f(n) from the set
of generated but not yet explored nodes

  Then select node first with lowest f(n) value

  Key component to every choice of f(n):
Heuristic function h(n)

  Heuristics are most common way to inject
domain knowledge and inform search

  Every h(n) is a cost estimate of cheapest
path from n to a goal node

55

Informed Search

  Greedy Best-First-Search
  Simply expands the node closest to the goal

  Not optimal, not complete, complexity O(bm)

  A* Search
  Combines path cost to n, g(n), and estimated

goal distance from n, h(n)

  f(n) estimates the cheapest path cost through n
  If h(n) is admissible: complete and optimal!

56

Heuristics

  Admissible heuristic:
  Let h*(n) be the true cost of the optimal path

from n to the goal. Then h(.) is admissible if the
following holds for all n:

  Heuristics are problem-specific. Good ones
(admissible, efficient) for our task are:
  Straight-line distance hSLD(n)

(as with any routing problem)
  Octile distance: Manhattan distance extended

to allow diagonal moves
  Deterministic Value Iteration/Dijkstra hVI(n)

57

be optimistic, never
overestimate the cost

Greedy Best-First Example

58

A* with hSLD Example

59

Heuristics for A*

60

  Deterministic Value Iteration
  Use Value Iteration for MDPs (later in this

course) with rewards -1 and unit discounts
  Like Dijkstra

  Precompute for dynamic or unknown
environments where replanning is likely

Heuristics for A*

  Deterministic Value Iteration

  Recall vector field from potential functions:
allows to implement a feedback control
strategy for an uncertain robot

61

A* with hVI Example

62

Problems with A* on Grids

1. The shortest path is often very close to
obstacles (cutting corners)
  Uncertain path execution increases the risk of

collisions
  Uncertainty can come from delocalized robot,

imperfect map or poorly modeled dynamic
constraints

2. Trajectories aligned to the grid structure
  Path looks unnatural
  Such paths are longer than the true shortest

path in the continuous space

63

Problems with A* on Grids

3. When the path turns out to be blocked
during traversal, it needs to be
replanned from scratch
  In unknown or dynamic environments, this can

occur very often
  Replanning in large state spaces is costly
  Can we reuse the initial plan?

Let us look at solutions to these problems...

64

Map Smoothing

  Given an occupancy grid map
  Convolution blurs the map M with

kernel k (e.g. a Gaussian kernel)

65

1D example: cells before and after two convolution runs

Map Smoothing

  Leads to above-zero
probability areas around
obstacles. Obstacles
appear bigger than
in reality

  Perform A* search in
convolved map with evalution function

 pocc(n): occupancy probability of node/cell n

  Could also be a term for cell traversal cost
66

Map Smoothing

67

Map Smoothing

68

Any-Angle A*

  Problem: A* search only considers paths
that are constrained to graph edges

  This can lead to unnatural, grid-aligned,
and suboptimal paths

69

Pictures from [Nash et al. AAAI'07]

Any-Angle A*

  Different approaches:
  A* on Visibility Graphs

Optimal solutions in terms of path length!

  A* with post-smoothing
Traverse solution and find pairs of nodes with
direct line of sight, replace by line segment

  Field D* [Ferguson and Stentz, JFR'06]
Interpolates costs of points not in cell centers.
Builds upon D* family, able to efficiently replan

  Theta* [Nash et al. AAAI'07, AAAI'10]
Extension of A*, nodes can have non-neigh-
boring successors based on a line-of-sight test

70

Any-Angle A* Examples

  Theta*

Game environment

  Field D*

Outdoor environment.
Darker cells have larger
traversal costs

71

A*

Theta*

A*

Field D*

  A* vs. Theta*

Any-Angle A* Examples

72

(len: path length, nhead = # heading changes)

len: 30.0
nhead: 11

len: 28.9
nhead: 5

len: 24.1
nhead: 9

len: 22.9
nhead: 2

Any-Angle A* Comparison
  A* PS and Theta*

provide the best trade
off for the problem

  A* on Visibility
Graphs scales poorly
(but is optimal)

  A* PS does not
always work in
nonuniform cost
environments.
Shortcuts can end up
in expensive areas

73

A* on Visibility Graphs

Field D*

Theta*

Post-smoothing A*
A*

Path Length / True Length

R
u
n
ti
m

e

[Daniel et al. JAIR'10]

D* Search

  Problem: In unknown, partially known or
dynamic environments, the planned path
may be blocked and we need to replan

  Can this be done efficiently, avoiding to
replan the entire path?

  Idea: Incrementally repair path keeping
its modifications local around robot pose

  Several approaches implement this idea:
  D* (Dynamic A*) [Stentz, ICRA'94, IJCAI'95]

  D* Lite [Koenig and Likhachev, AAAI'02]

  Field D* [Ferguson and Stentz, JFR'06]

74

D*/D* Lite

  Main concepts
  Switched search direction: search from goal

to the current vertex. If a change in edge cost
is detected during traversal (around the
current robot pose), only few nodes near the
goal (=start) need to be updated

  These nodes are nodes those goal distances
have changed or not been caculated before
AND are relevant to recalculate the new
shortest path to the goal

  Incremental heuristic search algorithms:
able to focus and build upon previous solutions

75

D* Lite Example

  Situation at start

76

Start

Goal

Expanded nodes
(goal distance
calculated)

Breadth-
First-

Search

D* Lite

A*

D* Lite Example

  After discovery of blocked cell

77

D* Lite

A* Breadth-
First-

Search

Blocked cell

Updated nodes

All other nodes remain
unaltered, the shortest path
can reuse them.

D* Family

  D* Lite produces the same paths than D*
but is simpler and more efficient

  D*/D* Lite are widely used
  Field D* was running on Mars rovers

Spirit and Opportunity (retrofitted in yr 3)

78

Tracks left by a drive executed with Field D*

Still in Dynamic Environments...

  Do we really need to replan the entire path
for each obstacle on the way?

  What if the robot has to react quickly to
unforeseen, fast moving obstacles?
  Even D* Lite can be too slow in such a situation

  Accounting for the robot shape
(it's not a point)

  Accounting for kinematic and dynamic
vehicle constraints, e.g.
  Decceleration limits,
  Steering angle limits, etc.

79

Collision Avoidance

  This can be handled by techniques called
collision avoidance (obstacle avoidance)

  A well researched subject, different
approaches exist:

  Dynamic Window Approaches
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

  Nearness Diagram Navigation
[Minguez et al., 2001, 2002]

  Vector-Field-Histogram+
 [Ulrich & Borenstein, 98]

  Extended Potential Fields
[Khatib & Chatila, 95]

80

Collision Avoidance

  Integration into general motion planning?

  It is common to subdivide the problem into
a global and local planning task:
  An approximate global planner computes

paths ignoring the kinematic and dynamic
vehicle constraints

  An accurate local planner accounts for the
constraints and generates (sets of) feasible
local trajectories ("collision avoidance")

  What do we loose? What do we win?

81

Two-layered Architecture

82

Planning

Collision Avoidance

sensor data

map

robot

low frequency

high frequency

sub-goal

motion command

Dynamic Window Approach

  Given: path to goal (a set of via points),
range scan of the local vicinity, dynamic
constraints

  Wanted: collision-free, safe, and fast
motion towards the goal

83

Dynamic Window Approach

  Assumption: robot takes motion
commands of the form (v,ω)

  This is saying that the robot moves
(instantaneously) on circular arcs with
radius r = v / ω

  Question: which (v,ω)'s are
  reasonable: that bring us to the goal?
  admissible: that are collision-free?
  reachable: under the vehicle constraints?

84

DWA Search Space

  2D velocity search space

85

  Vs = all possible speeds of the robot

  Va = obstacle free area

  Vd = speeds reachable within
one time frame given
acceleration constraints

Reachable Velocities

  Speeds are reachable if

86

Admissible Velocities

  Speeds are admissible if

87

Dynamic Window Approach

  How to choose (v,ω) ?
  Pose the problem as an optimization

problem of an objective function within
the dynamic window, search the
maximum

  The objective function is a heuristic
navigation function

  This function encodes the incentive to
minimize the travel time by “driving fast
and safe in the right direction”

88

Dynamic Window Approach

  Heuristic navigation function
  Planning restricted to (v,ω)-space
  Here: assume to have precomputed goal

distances from NF1 algorithm

89

89

Navigation Function: [Brock & Khatib, 99]

Dynamic Window Approach

  Heuristic navigation function
  Planning restricted to (v,ω)-space
  Here: assume to have precomputed goal

distances from NF1 algorithm

90

Navigation Function: [Brock & Khatib, 99]

Maximizes
velocity

Dynamic Window Approach

  Heuristic navigation function
  Planning restricted to (v,ω)-space
  Here: assume to have precomputed goal

distances from NF1 algorithm

91

Navigation Function: [Brock & Khatib, 99]

Maximizes
velocity

Rewards alignment
to NF1/A* gradient

Dynamic Window Approach

  Heuristic navigation function
  Planning restricted to (v,ω)-space
  Here: assume to have precomputed goal

distances from NF1 algorithm

92

Navigation Function: [Brock & Khatib, 99]

Rewards large advances
on NF1/A* path

Maximizes
velocity

Rewards alignment
to NF1/A* gradient

Dynamic Window Approach

  Heuristic navigation function
  Planning restricted to (v,ω)-space
  Here: assume to have precomputed goal

distances from NF1 algorithm

93

Navigation Function: [Brock & Khatib, 99]
Comes in when goal

region reached

Rewards large advances
on NF1/A* path

Maximizes
velocity

Rewards alignment
to NF1/A* gradient

Dynamic Window Approach

  Navigation function example

  Now perform search/optimization
  Find maximum

94

Dynamic Window Approach

  Reacts quickly at low CPU requirements
  Guides a robot on a collision free path
  Successfully used in many real-world

scenarios

  Resulting trajectories sometimes
suboptimal

  Local minima might prevent the robot from
reaching the goal location (regular DWA)

  Global DWA with NF1 overcomes this
problem

95

Problems of DWAs

96

Problems of DWAs

97

Robot‘s
velocity.

Problems of DWAs

98

Preferred
direction of NF.

Robot‘s
velocity.

Problems of DWAs

99

Problems of DWAs

100

Problems of DWAs

101

The robot drives too fast at c0 to enter
corridor facing south.

Problems of DWAs

102

Problems of DWAs

103

Problems of DWAs

  Same situation as in the beginning
 DWAs have problems to reach the goal

104

Problems of DWAs

  Typical problem in a real world situation:

  Robot does not slow down early enough to
enter the doorway.

105

Alternative: 5D-Planning

  Plans in the full <x,y,θ,v,ω>-configuration
space using A*
  Considers the robot's kinematic constraints

  Idea: search in the discretized
<x,y,θ,v,ω>-space

  Problem: search space too large to be
explored in real-time

  Solution: restrict the full search space to
"channels"

106

5D-Planning

  Use A* to find a trajectory in the 2D
<x,y >-space

  Choose a subgoal lying on the 2D-path
within the channel

  Use A* in the "channel" 5D-space to find
a sequence of steering commands to reach
the subgoal

107

5D-Planning Example

108

Summary (1 of 3)

  Motion planning lives in the C-space

  Combinatorial planning methods scale
poorly with C-space dimension and non-
linearity but are complete and optimal

  Sampling-based planning methods have
weaker guarantees but are more efficient

  They all produce a road map that
captures the connectivity of the C-space

  For planning on the road map, use
heuristic search methods such as A*

109

Summary (2 of 3)

  Deterministic value iteration or Dijkstra
yields the optimal heuristic for A*.
Precompute if on-line replanning is likely

  A* in smoothed grid maps helps to keep
the robot away from obstacles

  Any-angle A* methods produce shorter
paths with fewer heading changes

  D*/D* Lite avoids replanning from
scratch and finds the (usually few) nodes
to be updated for on-line replanning

110

Summary (3 of 3)

  In highly dynamic environments, reactive
collision avoidance methods that
account for the kinematic and dynamics
vehicle constraints become necessary

  Decoupling into an approximative global
and an accurate local planning problem,
integration using a layered architecture

  The Dynamic Window Approach optimizes
a navigation function to trade off feasible,
reasonable, and admissible motions

111

Uncertain Path Execution

  Have you ever become lost while trying
to follow a path (e.g. printed out from
Google maps)?

  Problem: path execution
is inherently uncertain!

  Even the best path is worthless
if the robot is unable to follow it

  Reasons: Underlying trajectoriy controller,
DWA, imperfect models of map/dynamics

  Instead of a plan, you need a policy
112

PATH!

  Consider an agent acting in this
environment

  Its mission is to reach the goal marked
by +1 avoiding the cell labelled -1

Markov Decision Process

113

  Consider an agent acting in this
environment

  Its mission is to reach the goal marked
by +1 avoiding the cell labelled -1

Markov Decision Process

114

Markov Decision Process

  Easy! Use a search algorithm such as A*

  Best solution (shortest path) is the action
sequence [Right, Up, Up, Right]

115

What is the problem?

  Consider a non-perfect system
in which actions are performed with a
probability less than 1

  What are the best actions for an agent
under this constraint?

  Example: a mobile robot does not
exactly perform a desired motion

  Example: human navigation

Uncertainty about performing actions!

MDP Example

  Consider the non-deterministic
transition model (N / E / S / W):

  Intended action is executed with p=0.8
  With p=0.1, the agent moves left or right
  Bumping into a wall "reflects" the robot

desired action

p=0.8

p=0.1 p=0.1

MDP Example

  Executing the A* plan in this environment

118

MDP Example

  Executing the A* plan in this environment

 But: transitions are non-deterministic!
119

MDP Example

  Executing the A* plan in this environment

 This will happen sooner or later...
120

MDP Example

  Use a longer path with lower probability
to end up in cell labelled -1

  This path has the highest overall utility
  Probability 0.86 = 0.2621

121

Transition Model

  The probability to reach the next state s'
from state s by choosing action a

 is called transition model

122

Markov Property:

The transition probabilities from s to s'
depend only on the current state s
and not on the history of earlier states

Reward

  In each state s, the agent receives a
reward R(s)

  The reward may be positive or negative
but must be bounded

  This can be generalized to be a function
R(s,a,s'). Here: consider only R(s), does not
change the problem

123

Reward

  In our example, the reward is -0.04 in all
states (e.g. the cost of motion) except the
terminal states (that have rewards +1/-1)

  A negative reward
gives agent an in-
centive to reach
the goal quickly

  Or: "living in this
environment is
not enjoyable"

124

MDP Definition

  Given a sequential decision problem in
a fully observable, stochastic environment
with a known Markovian transition model

  Then a Markov Decision Process is
defined by the components
 • Set of states:
• Set of actions:
• Initial state:
• Transition model:
• Reward funciton:

125

Policy

  An MDP solution is called policy π
  A policy is a mapping from states to actions

  In each state, a policy tells the agent
what to do next

  Let π (s) be the action that π specifies for s

  Among the many policies that solve an
MDP, the optimal policy π* is what we
seek. We'll see later what optimal means

126

Policy

  The optimal policy for our example

127

Conservative choice
Take long way around
as the cost per step of
-0.04 is small compared
with the penality to fall
down the stairs and
receive a -1 reward

Policy

  When the balance of risk and reward
changes, other policies are optimal

128

R < -1.63

-0.02 <
R < 0

-0.43 <
R < -0.09

R > 0

Leave as soon as possible Take shortcut, minor risks

No risks are taken Never leave (inf. #policies)

Utility of a State

  The utility of a state U(s) quantifies the
benefit of a state for the overall task

  We first define Uπ(s) to be the expected
utility of all state sequences that start
in s given π

  U(s) evaluates (and encapsulates) all
possible futures from s onwards

129

Utility of a State

  With this definition, we can express Uπ(s)
as a function of its next state s'

130

Optimal Policy

  The utility of a state allows us to apply the
Maximum Expected Utility principle to
define the optimal policy π*

  The optimal policy π* in s chooses the
action a that maximizes the expected
utility of s (and of s')

  Expectation taken over all policies
131

Optimal Policy

  Substituting Uπ(s)

  Recall that E[X] is the weighted average of
all possible values that X can take on

132

Utility of a State

  The true utility of a state U(s) is then
obtained by application of the optimal
policy, i.e. . We find

133

Utility of a State

  This result is noteworthy:

 We have found a direct relationship
between the utility of a state and the
utility of its neighbors

  The utility of a state is the immediate
reward for that state plus the expected
utility of the next state, provided the
agent chooses the optimal action

134

Bellman Equation

  For each state there is a Bellman equation
to compute its utility

  There are n states and n unknowns
  Solve the system using Linear Algebra?
  No! The max-operator that chooses the

optimal action makes the system nonlinear
  We must go for an iterative approach

135

Discounting

We have made a simplification on the way:
  The utility of a state sequence is often

defined as the sum of discounted rewards

 with 0 ≤ γ ≤ 1 being the discount factor

  Discounting says that future rewards are
less significant than current rewards.
This is a natural model for many domains

  The other expressions change accordingly
136

Separability

We have made an assumption on the way:

  Not all utility functions (for state
sequences) can be used

  The utility function must have the
property of separability (a.k.a. station-
arity), e.g. additive utility functions:

  Loosely speaking: the preference between
two state sequences is unchanged over
different start states

137

Utility of a State

  The state utilities for our example

  Note that utilities are higher closer to the
goal as fewer steps are needed to reach it

138

Idea:

  The utility is computed iteratively:

  Optimal utility:

  Abort, if change in utility is below a
threshold

Iterative Computation

  The utility function is the basis for
Dynamic Programming

  Fast solution to compute n-step decision
problems

  Naive solution: O(|A|n)

  Dynamic Programming: O(n |A| |S|)

  But: what is the correct value of n?

  If the graph has loops:

Dynamic Programming

The Value Iteration Algorithm

  Calculate utility of the center cell

Value Iteration Example

u=10

u=-8 u=5

u=1

r=1

Transition Model State space
(u=utility, r=reward)

desired action = Up

p=0.8

p=0.1 p=0.1

Value Iteration Example

u=10

u=-8 u=5

u=1

r=1

Value Iteration Example

  In our example

  States far from the goal first accumulate
negative rewards until a path is found to
the goal

144

(1,1) nr. of iterations →

Convergence

  The condition in the
algorithm can be formulated by

  Different ways to detect convergence:
  RMS error: root mean square error
  Max error:
  Policy loss

Convergence Example

  What the agent cares about is policy loss:
How well a policy based on Ui(s) performs

  Policy loss converges much faster
(because of the argmax)

RMS

Max error

Value Iteration

  Value Iteration finds the optimal solution
to the Markov Decision Problem!

  Converges to the unique solution of
the Bellman equation system for γ < 1

  Initial values for U' are arbitrary

  Proof involves the concept of contraction.
 with B being
the Bellman operator (see textbook)

  VI propagates information through the
state space by means of local updates

Optimal Policy

  How to finally compute the optimal
policy? Can be easily extracted along
the way by

  Note: U(s) and R(s) are quite different
quantities. R(s) is the short-term reward
for being in s, whereas U(s) is the long-
term reward from s onwards

148

Optimal Policy

  Examples

149

Summary

  MDPs describe an uncertain agent with a
stochastic transition model

  The solution is called policy that is a
mapping from states to actions

  Value Iteration is a instance of dynamic
programming, converges for lower-than-
one discounts or finite horizons

  A policy allows to implement a feedback
control strategy, the robot can never
become lost anymore

150

What's missing...?

  Good solutions to jointly plan the path
under local constraints that overcome
the decoupling of global and local planning

  Good solutions to implement feasible
feedback control strategies

  Problem: the curse of dimensionality
  AI/planning people and control theory

people need to talk more
  Hence, the robot motion planning problem

is not fully solved yet, but good solutions
for many practical problems exist

151

