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Robot Motion Planning 

J.-C. Latombe (1991):  

“…eminently necessary since, by definition, 
a robot accomplishes tasks by moving in 
the real world.” 

Goals 
  Collision-free trajectories 
  Robot should reach the goal location 

as fast as possible 
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Problem Formulation 

  The problem of motion planning can be 
stated as follows. Given: 

  A start pose of the robot 
  A desired goal pose 
  A geometric description of the robot 
  A geometric description of the world 

  Find a path that moves the robot 
gradually from start to goal while 
never touching any obstacle 
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Problem Formulation 

Motion planning is sometimes also called piano mover's problem 
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Configuration Space 

  Although the motion planning problem is 
defined in the regular world, it lives in 
another space: the configuration space 

  A robot configuration q is a specification of 
the positions of all robot points relative to 
a fixed coordinate system 

  Usually a configuration is expressed as a 
vector of positions and orientations 
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Configuration Space 

Rigid-body robot example 

  3-parameter representation: q = (x,y,θ) 
  In 3D, q would be of the form (x,y,z,α,β,γ) 
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Configuration Space 

Articulated robot example 
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q = (q1,q2,...,q10) 



Configuration Space 

  The configuration space (C-space) is the 
space of all possible configurations 

  The topology of this space is usually not 
that of a Cartesian space 

  The C-space is described as a topological 
manifold 

  Example: 
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wraps horizontally 
and vertically! 



Configuration Space 

  Example: circular robot 

  C-space is obtained by sliding the robot 
along the edge of the obstacle regions 
"blowing them up" by the robot radius 
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Configuration Space 

  Example: polygonal robot, translation only 

  C-space is obtained by sliding the robot 
along the edge of the obstacle regions 
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Configuration Space 

  Example: polygonal robot, translation only 

  C-space is obtained by sliding the robot 
along the edge of the obstacle regions 
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Configuration Space 

  Example: polygonal robot, trans+rotation 

  C-space is obtained by sliding the robot 
along the edge of the obstacle regions 
in all orientations 
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Configuration Space 

Free space and obstacle region 

  With            being the work space,            
the set of obstacles,       the robot in 
configuration 

  We further define 
  : start configuration 
  : goal configuration  
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Then, motion planning amounts to 

  Finding a continuous path 

 with 

  Given this setting, 
we can do planning 
with the robot being 
a point in C-space! 

Configuration Space 
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C-Space Discretizations 

  Continuous terrain needs to be 
discretized for path planning 

  There are two general approaches 
to discretize C-spaces: 

  Combinatorial planning 
 Characterizes Cfree explicitely by capturing the 
connectivity of Cfree into a graph and finds 
solutions using search 

  Sampling-based planning 
 Uses collision-detection to probe and 
incrementally search the C-space for solution 
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Combinatorial Planning 

  We will look at four combinatorial 
planning techniques 

  Visibility graphs 
  Voronoi diagrams 
  Exact cell decomposition 
  Approximate cell decomposition 

  They all produce a road map 
  A road map is a graph in Cfree in which each 

vertex is a configuration in Cfree and each edge 
is a collision-free path through Cfree 
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Combinatorial Planning 

  Without loss of generality, we will consider 
a problem in            with a point robot 
that cannot rotate. In this case:          

  We further assume a polygonal world 
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qI 

qG 

  Idea: construct a path as a polygonal line 
connecting qI and qG through vertices of Cobs 

  Existence proof for such paths, optimality 
  One of the earliest path planning methods 

  Best algorithm: O(n2 log n) 

Visibility Graphs 
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  Defined to be the set of points q whose 
cardinality of the set of boundary points of 
Cobs with the same distance to q is greater 
than 1 

  Let us decipher 
this definition... 

  Informally: 
the place with the 
same maximal 
clearance from 
all nearest obstacles 

Generalized Voronoi Diagram 
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  Formally: 
Let                 be the boundary of Cfree, and d(p,q) 
the Euclidian distance between p and q. Then, for 
all q in Cfree, let 

be the clearance of q, and 

the set of "base" points on β with the same 
clearance to q. The Voronoi diagram is then the 
set of q's with more than one base point p 

Generalized Voronoi Diagram 
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  Geometrically: 

  For a polygonal Cobs, the Voronoi diagram 
consists of (n) lines and parabolic segments 

  Naive algorithm: O(n4), best: O(n log n) 

Generalized Voronoi Diagram 
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Voronoi Diagram 

  Voronoi diagrams have been well studied 
for (reactive) mobile robot path planning 

  Fast methods exist to compute and update 
the diagram in real-time for low-dim. C's 

  Pros: maximize clear- 
ance is a good idea for 
an uncertain robot 

  Cons: unnatural at- 
traction to open space, 
suboptimal paths 

  Needs extensions 
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Exact Cell Decomposition  

  Idea: decompose Cfree into non-overlapping 
cells, construct connectivity graph to 
represent adjacencies, then search 

  A popular implementation of this idea: 

1.  Decompose Cfree into trapezoids with vertical 
side segments by shooting rays upward and 
downward from each polygon vertex 

2.  Place one vertex in the interior of every 
trapezoid, pick e.g. the centroid 

3.  Place one vertex in every vertical segment 
4.  Connect the vertices 
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Exact Cell Decomposition  

  Trapezoidal decomposition (          max)  

  Best known algorithm: O(n log n) where n is 
the number of vertices of Cobs 
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Approximate Cell Decomposition  

  Exact decomposition methods can be invol-
ved and inefficient for complex problems 

  Approximate decomposition uses cells with 
the same simple predefined shape 
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Approximate Cell Decomposition  

  Exact decomposition methods can be invol-
ved and inefficient for complex problems 

  Approximate decomposition uses cells with 
the same simple predefined shape 

  Pros: 
  Iterating the same simple computations 
  Numerically more stable  
  Simpler to implement 
  Can be made complete 
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Combinatorial Planning 

Wrap Up 
  Combinatorial planning techniques are 

elegant and complete (they find a 
solution if it exists, report failure otherwise) 

  But: become quickly intractable when 
C-space dimensionality increases (or n resp.) 

  Combinatorial explosion in terms of 
facets to represent    ,    , and       , 
especially when rotations bring in non- 
linearities and make C a nontrivial manifold 

 ➡  Use sampling-based planning 
 Weaker guarantees but more efficient 
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Sampling-Based Planning 

  Abandon the concept of explicitly 
characterizing Cfree and Cobs and leave the 
algorithm in the dark when exploring Cfree  

  The only light is provided by a collision-
detection algorithm, that probes C to 
see whether some configuration lies in Cfree 

  We will have a look at  
  Probabilistic road maps (PRM) 

[Kavraki et al., 92] 

  Rapidly exploring random trees (RRT) 
[Lavalle and Kuffner, 99] 
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Probabilistic Road Maps 

  Idea: Take random samples from C, 
declare them as vertices if in Cfree, try to 
connect nearby vertices with local planner 

  The local planner checks if line-of-sight is 
collision-free (powerful or simple methods) 

  Options for nearby: k-nearest neighbors 
or all neighbors within specified radius 

  Configurations and connections are added 
to graph until roadmap is dense enough 
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Probabilistic Road Maps 

  Example 
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specified radius 

Example local planner 

What means "nearby" on a manifold? 
Defining a good metric on C is crucial 



Probabilistic Road Maps 

Good and bad news: 

  Pros: 
  Probabilistically complete 
  Do not construct C-space 
  Apply easily to high-dim. C's 
  PRMs have solved previously 

unsolved problems 

  Cons: 
  Do not work well for some 

problems, narrow passages 
  Not optimal, not complete 
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Probabilistic Road Maps 

  How to uniformly sample C ? This is not 
at all trivial given its topology 

  For example over spaces of rotations: 
Sampling Euler angles gives samples near 
poles, not uniform over SO(3). Use 
quaternions! 

  However, PRMs are powerful, popular 
and many extensions exist: advanced 
sampling strategies (e.g. near obstacles), 
PRMs for deformable objects, closed- 
chain systems, etc. 
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Rapidly Exploring Random Trees 

  Idea: aggressively probe and explore the 
C-space by expanding incrementally 
from an initial configuration q0 

  The explored territory is marked by a 
tree rooted at q0 
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RRTs 

  The algorithm: Given C and q0  
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Sample from a bounded 
region centered around q0  

E.g. an axis-aligned 
relative random translation 
or random rotation 

(but recall sampling over 
rotation spaces problem) 



RRTs 

  The algorithm 
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Finds closest vertex in G  
using a distance function 

formally a metric 
defined on C  



RRTs 

  The algorithm 
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Several stategies to find 
qnear given the closest 
vertex on G: 

•  Take closest vertex 
•  Check intermediate 

points at regular intervals 
and split edge at qnear 



RRTs 

  The algorithm 
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Connect nearest point 
with random point using 
a local planner that 
travels from qnear to qrand 
•  No collision: add edge 

•  Collision: new vertex is 
qi, as close as possible 
to Cobs 



RRTs 

  The algorithm 
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Connect nearest point 
with random point using 
a local planner that 
travels from qnear to qrand 
•  No collision: add edge 

•  Collision: new vertex is 
qi, as close as possible 
to Cobs 



RRTs 

  How to perform path planning with RRTs? 

1.  Start RRT at qI 

2.  At every, say, 100th iteration, force qrand = qG  
3.  If qG is reached, problem is solved 

  Why not picking qG every time? 

  This will fail and waste much effort in 
running into CObs instead of exploring 
the space 

40 



RRTs 

  However, some problems require more 
effective methods: bidirectional search 

  Grow two RRTs, one from qI, one from qG 

  In every other 
step, try to 
extend each 
tree towards 
the newest 
vertex of the 
other tree 
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Filling a well A bug trap 



RRTs 

  RRTs are popular, many extensions exist: 
real-time RRTs, anytime 
RRTs, for dynamic 
environments etc. 

  Pros: 
  Balance between greedy 

search and exploration 
  Easy to implement 

  Cons: 
  Metric sensivity 
  Unknown rate of convergence 
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Alpha 1.0 puzzle. 
Solved with 

bidirectional RRT 



From Road Maps to Paths 

  All methods discussed so far construct a 
road map (without considering the query 
pair qI and qG) 

  Once the investment is made, the same  
road map can be reused for all queries 
(provided world and robot do not change)  

1.   Find the cell/vertex that contain/is close to qI 
and qG (not needed for visibility graphs) 

2.   Connect qI and qG to the road map 

3.   Search the road map for a path from qI to qG 
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Sampling-Based Planning 

Wrap Up 

  Sampling-based planners are more efficient in 
most practical problems but offer weaker 
guarantees 

  They are probabilistically complete: the 
probability tends to 1 that a solution is found if 
one exists (otherwise it may still run forever) 

  Performance degrades in problems with narrow 
passages. Subject of active research 

  Widely used. Problems with high-dimensional 
and complex C-spaces are still computationally 
hard 
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Potential Field Methods 

  All techniques discussed so far aim at cap-
turing the connectivity of Cfree into a graph 

  Potential Field methods follow a 
different idea: 

 The robot, represented as a point in C, is 
modeled as a particle under the influence 
of a artificial potential field U 

 U superimposes  
  Repulsive forces from obstacles 
  Attractive force from goal   

45 



Potential Field Methods 

  Potential function 

  Simply perform gradient descent 
  C-pace typically discretized in a grid 
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Potential Field Methods 

  Main problems: robot gets stuck in 
local minima 

  Way out: Construct local-minima-free 
navigation function ("NF1"), then do 
gradient descent (e.g. bushfire from goal) 

  The gradient of the potential function 
defines a vector field (similar to a policy) 
that can be used as feedback control 
strategy, relevant for an uncertain robot 

  However, potential fields need to represent 
Cfree explicitely. This can be too costly. 
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Robot Motion Planning 

  Given a road map, let's do search! 
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From A 
to B? 



A* Search 

  A* is one of the most widely-known 
informed search algorithms with many 
applications in robotics 

  Where are we? 
A* is an instance of an informed 
algorithm for the general problem of 
search 

  In robotics: planning on a 
2D occupancy grid map is 
a common approach 
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Search 

The problem of search: finding a sequence 
of actions (a path) that leads to desirable 
states (a goal) 

  Uninformed search: besides the problem 
definition, no further information about the 
domain ("blind search") 

  The only thing one can do is to expand 
nodes differently 

  Example algorithms: breadth-first, 
uniform-cost, depth-first, bidirectional, etc. 

  Informed search: f 
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Search 

The problem of search: finding a sequence 
of actions (a path) that leads to desirable 
states (a goal) 

  Informed search: further information 
about the domain through heuristics 

  Capability to say that a node is "more 
promising" than another node 

  Example algorithms: greedy best-first 
search, A*, many variants of A*, D*, etc. 
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Search 

The performance of a search algorithm is 
measured in four ways: 

  Completeness: does the algorithm find 
the solution when there is one? 

  Optimality: is the solution the best one of 
all possible solutions in terms of path cost? 

  Time complexity: how long does it take 
to find a solution? 

  Space complexity: how much memory is 
needed to perform the search? 
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Uninformed Search 

  Breadth-first 
  Complete 
  Optimal if action costs equal 
  Time and space: O(bd) 

  Depth-first 
  Not complete in infinite spaces 
  Not optimal 
  Time: O(bm) 
  Space: O(bm) (can forget 

explored subtrees) 

(b: branching factor, d: goal depth, m: max. tree depth) 
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Breadth-First Example 
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Informed Search 

  Nodes are selected for expansion based on 
an evaluation function f(n) from the set 
of generated but not yet explored nodes 

  Then select node first with lowest f(n) value 

  Key component to every choice of f(n): 
Heuristic function h(n) 

  Heuristics are most common way to inject 
domain knowledge and inform search 

  Every h(n) is a cost estimate of cheapest 
path from n to a goal node 
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Informed Search 

  Greedy Best-First-Search 
  Simply expands the node closest to the goal 

  Not optimal, not complete, complexity O(bm) 

  A* Search 
  Combines path cost to n, g(n), and estimated 

goal distance from n, h(n) 

  f(n) estimates the cheapest path cost through n 
  If h(n) is admissible: complete and optimal! 
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Heuristics 

  Admissible heuristic: 
  Let h*(n) be the true cost of the optimal path 

from n to the goal. Then h(.) is admissible if the 
following holds for all n: 

  Heuristics are problem-specific. Good ones 
(admissible, efficient) for our task are: 
  Straight-line distance hSLD(n) 

(as with any routing problem) 
  Octile distance: Manhattan distance extended 

to allow diagonal moves 
  Deterministic Value Iteration/Dijkstra hVI(n) 
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be optimistic, never 
overestimate the cost 



Greedy Best-First Example 
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A* with hSLD Example 
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Heuristics for A* 
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  Deterministic Value Iteration 
  Use Value Iteration for MDPs (later in this 

course) with rewards -1 and unit discounts 
  Like Dijkstra 

  Precompute for dynamic or unknown 
environments where replanning is likely 



Heuristics for A* 

  Deterministic Value Iteration 

  Recall vector field from potential functions: 
allows to implement a feedback control 
strategy for an uncertain robot 
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A* with hVI Example 
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Problems with A* on Grids 

1. The shortest path is often very close to 
obstacles (cutting corners) 
  Uncertain path execution increases the risk of 

collisions 
  Uncertainty can come from delocalized robot, 

imperfect map or poorly modeled dynamic 
constraints 

2. Trajectories aligned to the grid structure 
  Path looks unnatural 
  Such paths are longer than the true shortest 

path in the continuous space 
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Problems with A* on Grids 

3. When the path turns out to be blocked 
during traversal, it needs to be 
replanned from scratch 
  In unknown or dynamic environments, this can 

occur very often 
  Replanning in large state spaces is costly 
  Can we reuse the initial plan? 

Let us look at solutions to these problems... 
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Map Smoothing 

  Given an occupancy grid map 
  Convolution blurs the map M with 

kernel k (e.g. a Gaussian kernel) 
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1D example: cells before and after two convolution runs 



Map Smoothing 

  Leads to above-zero 
probability areas around 
obstacles. Obstacles 
appear bigger than 
in reality 

  Perform A* search in 
convolved map with evalution function 

 pocc(n): occupancy probability of node/cell n 

  Could also be a term for cell traversal cost 
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Map Smoothing 
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Map Smoothing 
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Any-Angle A* 

  Problem: A* search only considers paths 
that are constrained to graph edges 

  This can lead to unnatural, grid-aligned, 
and suboptimal paths 
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Pictures from [Nash et al. AAAI'07] 



Any-Angle A* 

  Different approaches: 
  A* on Visibility Graphs 

Optimal solutions in terms of path length! 

  A* with post-smoothing 
Traverse solution and find pairs of nodes with 
direct line of sight, replace by line segment 

  Field D* [Ferguson and Stentz, JFR'06]  
Interpolates costs of points not in cell centers. 
Builds upon D* family, able to efficiently replan 

  Theta* [Nash et al. AAAI'07, AAAI'10] 
Extension of A*, nodes can have non-neigh-
boring successors based on a line-of-sight test 
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Any-Angle A* Examples 

  Theta* 

Game environment 

  Field D* 

Outdoor environment. 
Darker cells have larger 
traversal costs 
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  A* vs. Theta* 

Any-Angle A* Examples 
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(len: path length, nhead = # heading changes) 

len: 30.0 
nhead: 11 

len: 28.9 
nhead: 5 

len: 24.1 
nhead: 9 

len: 22.9 
nhead: 2 



Any-Angle A* Comparison 
  A* PS and Theta* 

provide the best trade 
off for the problem 

  A* on Visibility 
Graphs scales poorly 
(but is optimal) 

  A* PS does not 
always work in 
nonuniform cost 
environments. 
Shortcuts can end up 
in expensive areas 
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A* on Visibility Graphs 

Field D* 

Theta* 

Post-smoothing A* 
A* 

Path Length / True Length 

R
u
n
ti
m

e 
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D* Search 

  Problem: In unknown, partially known or 
dynamic environments, the planned path 
may be blocked and we need to replan 

  Can this be done efficiently, avoiding to 
replan the entire path?  

  Idea: Incrementally repair path keeping 
its modifications local around robot pose 

  Several approaches implement this idea: 
  D* (Dynamic A*) [Stentz, ICRA'94, IJCAI'95] 

  D* Lite [Koenig and Likhachev, AAAI'02] 

  Field D* [Ferguson and Stentz, JFR'06] 
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D*/D* Lite 

  Main concepts 
  Switched search direction: search from goal 

to the current vertex. If a change in edge cost 
is detected during traversal (around the 
current robot pose), only few nodes near the 
goal (=start) need to be updated 

  These nodes are nodes those goal distances 
have changed or not been caculated before 
AND are relevant to recalculate the new 
shortest path to the goal 

  Incremental heuristic search algorithms: 
able to focus and build upon previous solutions 

75 



D* Lite Example 

  Situation at start 
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Start 

Goal 

Expanded nodes 
(goal distance 
calculated) 
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D* Lite Example 

  After discovery of blocked cell 
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D* Lite 

A* Breadth- 
First- 

Search 

Blocked cell 

Updated nodes 

All other nodes remain 
unaltered, the shortest path 
can reuse them. 



D* Family 

  D* Lite produces the same paths than D* 
but is simpler and more efficient 

  D*/D* Lite are widely used 
  Field D* was running on Mars rovers 

Spirit and Opportunity (retrofitted in yr 3) 
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Tracks left by a drive executed with Field D*  



Still in Dynamic Environments... 

  Do we really need to replan the entire path 
for each obstacle on the way? 

  What if the robot has to react quickly to 
unforeseen, fast moving obstacles? 
  Even D* Lite can be too slow in such a situation 

  Accounting for the robot shape 
(it's not a point) 

  Accounting for kinematic and dynamic 
vehicle constraints, e.g. 
  Decceleration limits,  
  Steering angle limits, etc. 
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Collision Avoidance 

  This can be handled by techniques called 
collision avoidance (obstacle avoidance) 

  A well researched subject, different 
approaches exist: 

  Dynamic Window Approaches 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

  Nearness Diagram Navigation 
[Minguez et al., 2001, 2002] 

  Vector-Field-Histogram+ 
 [Ulrich & Borenstein, 98]  

  Extended Potential Fields 
[Khatib & Chatila, 95] 
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Collision Avoidance 

  Integration into general motion planning? 

  It is common to subdivide the problem into 
a global and local planning task: 
  An approximate global planner computes 

paths ignoring the kinematic and dynamic 
vehicle constraints 

  An accurate local planner accounts for the 
constraints and generates (sets of) feasible 
local trajectories ("collision avoidance") 

  What do we loose? What do we win? 
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Two-layered Architecture 
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Dynamic Window Approach 

  Given: path to goal (a set of via points), 
range scan of the local vicinity, dynamic 
constraints 

  Wanted: collision-free, safe, and fast 
motion towards the goal 
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Dynamic Window Approach 

  Assumption: robot takes motion 
commands of the form (v,ω) 

  This is saying that the robot moves 
(instantaneously) on circular arcs with 
radius r = v / ω 

  Question: which (v,ω)'s are 
  reasonable: that bring us to the goal? 
  admissible: that are collision-free? 
  reachable: under the vehicle constraints? 

84 



DWA Search Space 

  2D velocity search space 
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  Vs = all possible speeds of the robot 

  Va = obstacle free area 

  Vd = speeds reachable within 
one time frame given 
acceleration constraints 



Reachable Velocities 

  Speeds are reachable if 
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Admissible Velocities 

  Speeds are admissible if 
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Dynamic Window Approach 

  How to choose (v,ω) ? 
  Pose the problem as an optimization 

problem of an objective function within 
the dynamic window, search the 
maximum 

  The objective function is a heuristic 
navigation function 

  This function encodes the incentive to 
minimize the travel time by “driving fast 
and safe in the right direction”  
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Dynamic Window Approach 

  Heuristic navigation function 
  Planning restricted to (v,ω)-space 
  Here: assume to have precomputed goal 

distances from NF1 algorithm 
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Navigation Function: [Brock & Khatib, 99] 
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Navigation Function: [Brock & Khatib, 99] 

Maximizes 
velocity 
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  Heuristic navigation function 
  Planning restricted to (v,ω)-space 
  Here: assume to have precomputed goal 

distances from NF1 algorithm 
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Navigation Function: [Brock & Khatib, 99] 

Maximizes 
velocity 

Rewards alignment 
to NF1/A* gradient 



Dynamic Window Approach 

  Heuristic navigation function 
  Planning restricted to (v,ω)-space 
  Here: assume to have precomputed goal 

distances from NF1 algorithm 
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Navigation Function: [Brock & Khatib, 99] 

Rewards large advances 
on NF1/A* path 

Maximizes 
velocity 

Rewards alignment 
to NF1/A* gradient 



Dynamic Window Approach 

  Heuristic navigation function 
  Planning restricted to (v,ω)-space 
  Here: assume to have precomputed goal 

distances from NF1 algorithm 
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Navigation Function: [Brock & Khatib, 99] 
Comes in when goal 

region reached 

Rewards large advances 
on NF1/A* path 

Maximizes 
velocity 

Rewards alignment 
to NF1/A* gradient 



Dynamic Window Approach 

  Navigation function example 

  Now perform search/optimization 
  Find maximum 
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Dynamic Window Approach 

  Reacts quickly at low CPU requirements 
  Guides a robot on a collision free path 
  Successfully used in many real-world 

scenarios 

  Resulting trajectories sometimes 
suboptimal 

  Local minima might prevent the robot from 
reaching the goal location (regular DWA) 

  Global DWA with NF1 overcomes this 
problem 
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Problems of DWAs 
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Robot‘s 
velocity.  



Problems of DWAs  
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Preferred 
direction of NF. 

Robot‘s 
velocity.  



Problems of DWAs  
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Problems of DWAs  
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The robot drives too fast at c0 to enter 
corridor facing south. 



Problems of DWAs  
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Problems of DWAs  
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Problems of DWAs  

  Same situation as in the beginning 
 DWAs have problems to reach the goal 
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Problems of DWAs  

  Typical problem in a real world situation: 

  Robot does not slow down early enough to 
enter the doorway. 
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Alternative: 5D-Planning 

  Plans in the full <x,y,θ,v,ω>-configuration 
space using A* 
  Considers the robot's kinematic constraints 

  Idea: search in the discretized 
<x,y,θ,v,ω>-space 

  Problem: search space too large to be 
explored in real-time 

  Solution: restrict the full search space to 
"channels" 
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5D-Planning 

  Use A* to find a trajectory in the 2D 
<x,y >-space 

  Choose a subgoal lying on the 2D-path 
within the channel 

  Use A* in the "channel" 5D-space to find 
a sequence of steering commands to reach 
the subgoal 
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5D-Planning Example 
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Summary (1 of 3) 

  Motion planning lives in the C-space 

  Combinatorial planning methods scale 
poorly with C-space dimension and non-
linearity but are complete and optimal 

  Sampling-based planning methods have 
weaker guarantees but are more efficient 

  They all produce a road map that 
captures the connectivity of the C-space 

  For planning on the road map, use 
heuristic search methods such as A* 
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Summary (2 of 3) 

  Deterministic value iteration or Dijkstra 
yields the optimal heuristic for A*. 
Precompute if on-line replanning is likely 

  A* in smoothed grid maps helps to keep 
the robot away from obstacles 

  Any-angle A* methods produce shorter 
paths with fewer heading changes 

  D*/D* Lite avoids replanning from 
scratch and finds the (usually few) nodes 
to be updated for on-line replanning 
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Summary (3 of 3) 

  In highly dynamic environments, reactive 
collision avoidance methods that 
account for the kinematic and dynamics 
vehicle constraints become necessary 

  Decoupling into an approximative global 
and an accurate local planning problem, 
integration using a layered architecture 

  The Dynamic Window Approach optimizes 
a navigation function to trade off feasible, 
reasonable, and admissible motions 
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Uncertain Path Execution 

  Have you ever become lost while trying 
to follow a path (e.g. printed out from 
Google maps)? 

  Problem: path execution 
is inherently uncertain! 

  Even the best path is worthless 
if the robot is unable to follow it 

  Reasons: Underlying trajectoriy controller, 
DWA, imperfect models of map/dynamics 

  Instead of a plan, you need a policy 
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  Consider an agent acting in this 
environment 

  Its mission is to reach the goal marked 
by +1 avoiding the cell labelled -1 

Markov Decision Process 
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114 



Markov Decision Process 

  Easy! Use a search algorithm such as A* 

  Best solution (shortest path) is the action 
sequence [Right, Up, Up, Right] 
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What is the problem? 

  Consider a non-perfect system 
in which actions are performed with a 
probability less than 1 

  What are the best actions for an agent 
under this constraint? 

  Example: a mobile robot does not 
exactly perform a desired motion 

  Example: human navigation 

Uncertainty about performing actions! 



MDP Example 

  Consider the non-deterministic 
transition model (N / E / S / W): 

  Intended action is executed with p=0.8 
  With p=0.1, the agent moves left or right 
  Bumping into a wall "reflects" the robot 

desired action 

p=0.8 

p=0.1 p=0.1 



MDP Example 

  Executing the A* plan in this environment 
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MDP Example 

  Executing the A* plan in this environment 

 But: transitions are non-deterministic! 
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MDP Example 

  Executing the A* plan in this environment 

 This will happen sooner or later... 
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MDP Example 

  Use a longer path with lower probability 
to end up in cell labelled -1 

  This path has the highest overall utility 
  Probability 0.86 = 0.2621 
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Transition Model 

  The probability to reach the next state s' 
from state s  by choosing action a  

   

 is called transition model 
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Markov Property: 

The transition probabilities from s to s' 
depend only on the current state s 
and not on the history of earlier states 



Reward 

  In each state s, the agent receives a 
reward R(s) 

  The reward may be positive or negative 
but must be bounded 

  This can be generalized to be a function 
R(s,a,s'). Here: consider only R(s), does not 
change the problem 
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Reward 

  In our example, the reward is -0.04 in all 
states (e.g. the cost of motion) except the 
terminal states (that have rewards +1/-1) 

  A negative reward 
gives agent an in- 
centive to reach 
the goal quickly 

  Or: "living in this 
environment is 
not enjoyable" 
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MDP Definition 

  Given a sequential decision problem in 
a fully observable, stochastic environment 
with a known Markovian transition model 

  Then a Markov Decision Process is 
defined by the components 
 • Set of states: 
• Set of actions: 
• Initial state: 
• Transition model: 
• Reward funciton: 
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Policy 

  An MDP solution is called policy π 
  A policy is a mapping from states to actions 

  In each state, a policy tells the agent 
what to do next 

  Let π (s) be the action that π  specifies for s 

  Among the many policies that solve an 
MDP, the optimal policy π* is what we 
seek. We'll see later what optimal means 
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Policy 

  The optimal policy for our example 
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Conservative choice 
Take long way around 
as the cost per step of 
-0.04 is small compared 
with the penality to fall 
down the stairs and 
receive a -1 reward 



Policy 

  When the balance of risk and reward 
changes, other policies are optimal 
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R < -1.63 

-0.02 < 
R < 0 

-0.43 < 
R < -0.09 

R > 0 

Leave as soon as possible Take shortcut, minor risks 

No risks are taken Never leave (inf. #policies) 



Utility of a State 

  The utility of a state U(s) quantifies the 
benefit of a state for the overall task 

  We first define Uπ(s) to be the expected 
utility of all state sequences that start 
in s given π  

  U(s) evaluates (and encapsulates) all 
possible futures from s onwards 
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Utility of a State 

  With this definition, we can express Uπ(s) 
as a function of its next state s' 
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Optimal Policy 

  The utility of a state allows us to apply the 
Maximum Expected Utility principle to 
define the optimal policy π* 

  The optimal policy π* in s chooses the 
action a that maximizes the expected 
utility of s (and of s') 

  Expectation taken over all policies 
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Optimal Policy 

  Substituting Uπ(s)  

  Recall that E[X] is the weighted average of 
all possible values that X can take on 
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Utility of a State 

  The true utility of a state U(s) is then 
obtained by application of the optimal 
policy, i.e.                  . We find 
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Utility of a State 

  This result is noteworthy: 

 We have found a direct relationship 
between the utility of a state and the 
utility of its neighbors 

  The utility of a state is the immediate 
reward for that state plus the expected 
utility of the next state, provided the 
agent chooses the optimal action 
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Bellman Equation 

  For each state there is a Bellman equation 
to compute its utility 

  There are n states and n unknowns 
  Solve the system using Linear Algebra? 
  No! The max-operator that chooses the 

optimal action makes the system nonlinear 
  We must go for an iterative approach 
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Discounting 

We have made a simplification on the way: 
  The utility of a state sequence is often 

defined as the sum of discounted rewards 

 with 0 ≤ γ ≤ 1 being the discount factor 

  Discounting says that future rewards are 
less significant than current rewards. 
This is a natural model for many domains 

  The other expressions change accordingly 
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Separability 

We have made an assumption on the way: 

  Not all utility functions (for state 
sequences) can be used 

  The utility function must have the 
property of separability (a.k.a. station-
arity), e.g. additive utility functions: 

  Loosely speaking: the preference between 
two state sequences is unchanged over 
different start states 
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Utility of a State 

  The state utilities for our example 

  Note that utilities are higher closer to the 
goal as fewer steps are needed to reach it 
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Idea: 

  The utility is computed iteratively:   

  Optimal utility:  

  Abort, if change in utility is below a 
threshold 

Iterative Computation 



  The utility function is the basis for 
Dynamic Programming 

  Fast solution to compute n-step decision 
problems 

  Naive solution: O( |A|n ) 

  Dynamic Programming: O( n |A| |S| ) 

  But: what is the correct value of n?  

  If the graph has loops:  

Dynamic Programming 



The Value Iteration Algorithm 



  Calculate utility of the center cell 

Value Iteration Example  

u=10  

u=-8  u=5  

u=1  

r=1 

Transition Model State space  
(u=utility, r=reward) 

desired action = Up 

p=0.8 

p=0.1 p=0.1 



Value Iteration Example  

u=10  

u=-8  u=5  

u=1  

r=1 



Value Iteration Example  

  In our example 

  States far from the goal first accumulate 
negative rewards until a path is found to 
the goal 
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(1,1) nr. of iterations → 



Convergence 

  The condition                           in the 
algorithm can be formulated by 

  Different ways to detect convergence: 
  RMS error: root mean square error 
  Max error: 
  Policy loss 



Convergence Example 

  What the agent cares about is policy loss: 
How well a policy based on Ui(s) performs 

  Policy loss converges much faster 
(because of the argmax) 

RMS 

Max error 



Value Iteration  

  Value Iteration finds the optimal solution 
to the Markov Decision Problem! 

  Converges to the unique solution of 
the Bellman equation system for γ < 1


  Initial values for U' are arbitrary 

  Proof involves the concept of contraction. 
                                       with B being 
the Bellman operator (see textbook) 

  VI propagates information through the 
state space by means of local updates 



Optimal Policy 

  How to finally compute the optimal 
policy? Can be easily extracted along 
the way by 

  Note: U(s) and R(s) are quite different 
quantities. R(s) is the short-term reward 
for being in s, whereas U(s) is the long-
term reward from s onwards 
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Optimal Policy 

  Examples 
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Summary 

  MDPs describe an uncertain agent with a 
stochastic transition model 

  The solution is called policy that is a 
mapping from states to actions 

  Value Iteration is a instance of dynamic 
programming, converges for lower-than-
one discounts or finite horizons 

  A policy allows to implement a feedback 
control strategy, the robot can never 
become lost anymore 
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What's missing...? 

  Good solutions to jointly plan the path 
under local constraints that overcome 
the decoupling of global and local planning 

  Good solutions to implement feasible 
feedback control strategies 

  Problem: the curse of dimensionality 
  AI/planning people and control theory 

people need to talk more 
  Hence, the robot motion planning problem 

is not fully solved yet, but good solutions 
for many practical problems exist 
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