Introduction to Mobile Robotics

Multi-Robot Exploration

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Exploration

- The approaches seen so far are purely passive.
- Given an unknown environment, how can we control the robot(s) to efficiently learn a map?
- By reasoning about control, the mapping process can be made much more effective.

Decision-Theoretic Formulation of Exploration

$$\pi(Bel) = \\ \arg\max_{u} \left[E_z[I_{Bel}(z,u)] - \alpha \int_x r(x,u) \; Bel(x) \; dx \right] \\ \operatorname{reward} \qquad \qquad \operatorname{cost} \\ \operatorname{(expected information gain)} \qquad \operatorname{(path length)}$$

Exploration with Known Poses

Motivation

Whenever teams of mobile robots are used, the question arises, how to control them in order to optimize the performance of the whole team.

- Exploration
- Path planning
- Action planning ...

Exploration: The Problem

Given:

- Unknown environment
- Team of robots

Task:

 Coordinate the robots to efficiently learn a complete map of the environment

Complexity:

Exponential in the number of robots

Example

Robot 1:

Robot 2:

Levels of Coordination

- No exchange of information
- Implicit coordination (uncoordinated): Sharing a joint map [Yamauchi et.al, 98]
 - Communication of the individual maps and poses
 - Central mapping system
- Explicit coordination: Improve assignment of robots to target points
 - Communication of the individual maps and poses
 - Central mapping system
 - Central planner for target point assignment

Idea

- 1. Choose target locations at the frontier to the unexplored area by trading off the expected information gain and travel costs.
- 2. Reduce utility of target locations whenever they are expected to be covered by another robot.
- 3. Use on-line mapping and localization to compute the joint map.

The Coordination Algorithm (informal)

- 1. Determine the frontier cells.
- 2. Compute for each robot the cost for reaching each frontier cell.
- Choose the robot with the optimal overall evaluation and assign the corresponding target point to it.
- 4. Reduce the utility of the frontier cells visible from that target point.
- 5. If there is one robot left go to 3.

The Coordination Algorithm

- Determine the set of frontier cells
- 2. Compute for each robot i the cost $V_{x,y}^i$ for reaching each frontier cell
- 3. Set the utility $U_{x,y}$ of all frontier cells to 1
- 4. While there is one robot left without a target point
 - (a) Determine a robot i and a frontier cell $\langle x,y \rangle$ which satisfy

$$(i, \langle x, y \rangle) = \underset{(i', \langle x', y' \rangle)}{\operatorname{argmax}} U_{x', y'} - V_{x', y'}^{i'}$$

(b) Reduce the utility of each target point $\langle x', y' \rangle$ in the visibility area according to

$$U_{x',y'} \leftarrow U_{x',y'} \cdot (1 - P(||\langle x,y \rangle - \langle x',y' \rangle ||))$$

Estimating the Visible Area

Distances measured during exploration:

Resulting probability of measuring at least distance d:

Application Example

First robot:

Multi-Robot Exploration and Mapping of Large Environments

Multi-Robot Mapping and Exploration

> Carnegie Mellon October 1999

Resulting Map (constructed in 8 minutes!)

Further Application

Typical Trajectories in an Office Environment

Implicit coordination:

Explicit coordination:

Exploration Time

Simulation Experiments

Implicitly coordinated:

Explicitly coordinated:

Optimizing Assignments

 The current system performs a greedy assignment of robots to target locations

What if we optimize the assignment?

Optimizing Assignment Algorithm

Algorithm 2 Goal selection determining the best assignment over all permutations.

- 1: Determine the set of frontier cells.
- 2: Compute for each robot i the cost V_t^i for reaching each frontier cell.
- 3: Determine target locations t_1, \ldots, t_n for the robots $i = 1, \ldots, n$ that maximizes the following evaluation function: $\sum_{i=1}^{n} U(t_i \mid t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n) \beta \cdot (V_{t_i}^i)^2.$

One approach: randomized optimization of assignments.

General Idea for Optimization

- 1. Start with an initial assignment
- 2. Select a pair of robot/target point assignments
- 3. If the evaluation improves if we swap the assignments

Variants:

- accept lower evaluations with a certain but over time decreasing probability
- perform random restarts

Other Coordination Techniques

- Hungarian Method:
 - Optimal assignment of jobs to machines given a fixed cost matrix.
 - Similar results that the presented coordination technique.
- Market economy-guided approaches:
 - Robots trade with targets.
 - Computational load is shared between the robots

Exploration Time

Summary on Exploration

- Coordination techniques that intelligently distribute the robots over the environment lead to reduced exploration time.
- Methods trade off the cost of an action and the expected utility of reaching the corresponding frontier (target location)

Open Problems

- Unknown starting locations
- Exploration under position uncertainty
- Limited communication abilities
- Efficient exchange of information
- Separation of the environment to get better target points and assignments.