Sit-to-Stand Task on a Humanoid Robot from Human Demonstraion
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Abstract—In this work, we perform the challenging task  postures. The inertial parameter identification method can
of a humanoid robot standing up from a chair. First we provide a more accurate estimate than the manufacturers’
recorded demonstrations of sit-to-stand motions from normal AP gata. Next, in order to map the recorded human motion
human subjects as well as actors performing stylized standg to th bot fi il di . i i
motions (e.g. imitating an elderly person). Ground contacforce 0 the robot mo !on, we W' 'SC_USS ou_r |r_1ve.rse Inematics
information was also collected for these motions, in order Procedure. The inverse kinematics optimization attempts t
to estimate the human’s center of mass trajectory. We then match the human’s kinematic motion as closely as possible,
mapped the demonstrated motions to the humanoid robot via \hile tracking the human’s COM trajectory. Finally we
an inverse kinematics procedure that attempts to track the will demonstrate the resulting motion implemented on the

human’s kinematics as well as their center-of-mass trajecty. C ie Mellon/S hvdraulic h id robot
In order to estimate the robot's center-of-mass position acu- arnegie Meflon/sarcos hydraulic humanoid robot.

rately, we additionally used an inertial parameter identification
technique that fit mass and center-of-mass link parametersém Il. ROBOT CENTER OF MASS ESTIMATION

measured force data. We demonstrate the resulting motionsro

the Camegie Mellon/Sarcos hydraulic humanoid robot. Planning a successful sit-to-stand motion without falling

requires accurate knowledge of the robot's center-of-mass
I. INTRODUCTION position throughout the trajectory. Not only must the rabot

As humans we are generally able to execute dynamfeOM be placed above the feet by the end of the movement,
and dexterous motions with relative ease: walking, jumpingve also wish to track the human demonstrator's COM
and dancing are a few examples. The motion of sitting ari#ajectory as closely as possible, to realize natural human
standing up from a chair is also a seemingly simple antke motion. If we know the masses and relative COM
commonplace motion we do everyday, but in reality is quitéocations of each individual link on the robot, we can easily
complex and dynamic, and can become challenging and eveftain the total COM location of any configuration via
dangerous as we grow older. Success of this task requif@ward kinematics. Although the manufacturers of most
whole body coordination and balance, careful control antpbots provide estimates of masses and COMs of each link
placement of the body’s center-of-mass (COM) as it move&mputed by computer aided design (CAD) software, these
from a large support basin under the chair to much small@stimates do not account for several components including
one above the feet, all the while coping with sudden contafin the case of our robot) hydraulic hoses, electronics,
state and force changes. As roboticists, we are interesteddnd onboard computers. These extra components contribute
such a motion and aim to better understand its compleRPProximately 50% additional mass to our robot.
ities by synthesizing natural human sitting-to-standing o T obtain a more accurate estimate of the robot's center of
a humanoid robot platform. To do so, we will first recordmass position, we employ a simplified version of a traditiona
the motions of humans naturally standing up from chairdeast-squares optimization inertial parameter identifica
and transfer that motion onto a humanoid robot. Howevetechnique. As shown in [1], [2] (and extended to floating
this transfer process is non-trivial as simple playback ddase systems by [3], [4]), the complete dynamics equations
the recorded motion will generally fail, because the huma#f a floating base rigid body robot can be written to be linear
and robot have different kinematic and dynamic propertie®/ith respect to inertial parameters:

Therefore, we will also record the contact forces of the oo
humans as they execute the motion, and use the human’s K(q,4,4)¢ = ST+ JC(a), (1)

COM trajectory as a guide for the robot. _ whereq € R"* is the robot configuration vector (joints

In this work, we outline our procedure for generatingyjus 6 DOF floating base); € R™ is the vector of actuation
and implementing natural human-like sit-to-stand motiongrques,S = [ 06 Lnxn } delineates the actuated and
from human demonstrr?ltlon onto a humanoid robot. Becaug@actuated degrees-of-freedom (note that the floating isase
the center-of-mass trajectory of both the human and robghactuated)J is the contact Jacobian, ands the vector of
are an essential component of this procedure, we will firgoniact forces. Finallyp = [ ¢f of oL ]T is the
discuss how we estimate the sagittal plane COM of the robgbtor of inertial parameters of+ 1 links (n joints plus the
using joint torques and contact forces recorded from Statifhating base link), and each link has 12 inertial parameters
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where m; is the mass of Ilink 7, the vector
(CgssCysyCzy) 1S the link's center of mass position, and
(Tpws s Loyss Tuzss Tyyss Lyzis Loy @re the 6 independent
components of its inertia tensor. Additionallf, and f,
are coulomb and viscous friction, respectively.

By considering only static postures of the robot (i.e., when
q = q = 0), we further simplify (1), by considering only
the gravity contribution ofK:

K,y (q)p, = S"7+IG(q)A, ®)

with each link's parameters defined as:

Torso
Hip
Knee

— Ankle
Ggi=[mi mice, micy, Mmics, |* (4)

By measuring the contact forces and torques while th'g.:g 1

- . Left: The Carnegie Mellon/Sarcos humanoid robohditzg in
robot is in several static postures, we can collect sevexial d 9 g

a static squat position. Contact forces are measured using fsensing

points and stack them in the following manner: plates shown below the robot. Right: Some sample postured ias data
collection.
Kg(ql) S;Tl +J§l/\1
Kg(qg) S T2+JC2/\2

. ) ®) only reflect the center of mass of a 5 link planar robot, we
K ('q ) ST +'JT \ have reduced the total numb_er of inertial parameters from
9\aN N T EoNN 468 (the full robot with 39 links) to 15 (5 links with 3
or in more simple notation as: parameters each: mass and x, y positions). Note, however,

— = by restricting estimation to a planar model, we sacrifice the
Ky¢g =1, ®)  identifiability of individual links. Instead we are limitet
where the bar notation refers to an augmented stack of only being able to identify groups of parameters in linear
matrices, and the following vector of total generalizeccéor combinations with each other [5]. While identification of
T T individual link parameters may be erroneous, the aggregate
fi=S"mn+Jc (") center of mass estimation of all links can still be accurate.

: g

The inertial parameters, which contribute to gravity farce B. Data Collection and Estimation

can then be estimated using ordinary weighted least squares
To collect data for center of mass estimation, we place

. T\l —7- : . .
by = (K;FKQ) K;Ff , (8) the robot into several statically stable standing postofes
A various ankle, knee, hip, and torso configurations. In each
which will compute the parameter seéji, that minimizes posture, we record joint torques of the robot using onboard

HK]@Q _ fH _ load cells and the contact forces and moments of each foot
o 2 with individual force sensing plates (AMTI Biomechanics
A. Reduced Robot Model Force Platform) (Fig. 1 (left)). We recorded a total of 88

One major challenge of data-driven inertial parametetiifferent standing postures including upright straighe&n
estimation approaches is acquiring a rich data set thafyeverstanding and low bending squatting (the right and left sides
samples the entire configuration/motion space. Humanoff the robot were kept symmetrical). The total range of
robots compound this problem, since they are generally highsplacement of each joint in the entire data setis 1.4%,1.6
degree of freedom systems and the useable workspace0i§6, and 0.56 radians for hip, knee, ankle, and torso joints
limited to a set of stable postures. However, we may be ablgspectively. Fig. 1 (right) shows five representative prest
to reduce the complexity by estimating only those paramsetefrom the data set.
relevant to the task. In our sit-to-stand task, the forward To evaluate the quality of our estimation procedure, we
progression of the center of mass is most critical for robgieparated the data set into 90% for training and 10% for
stability. Therefore, we decided to further simplify theeid ~ evaluation (9 of 88 postures). For each evaluation posture
tification problem by considering a reduced dimensionalityve compared the predicted center of mass position versus
model of the robot with motion restricted to the sagittathe recorded center-of-pressure position obtained froen th
plane. Therefore for center of mass parameter estimatien, viAMTI force sensor. RMS error for forward/backwards center
use a 5 link model with 4 actuated DOFS: ankle, knee, hi®)f mass position was 0.0196 m in the evaluation set.
and torso (again the base link is unactuated) (Fig. 1 (fight)

One or two arm links would also have been reasonable to 1. MOTION GENERATION FROM HUMAN

add to the planar model, however, we decided to neglect DEMONSTRATION

the arms due to their small mass relative to the heavier legsWe wish to understand how a human controls his whole
and torso. By simplifying the inertial parameter problem tdody in an environment with multiple and variable contact



] Fig. 3. Left: Kinematic model of humanoid robot. Right: 158B skeletal
model used to estimate the human’s COM position.

STEP4 ° o°
of humans are difficult to estimate.

2) The kinematics and mass properties differ between
humans and the humanoid robot.

3) The accurate dynamics properties of the humanoid
robot are unknown and differ from the manufacturer’s
CAD data.

We generate the humanoid robot’s motion in the following
steps while addressing these problems. An overview of the
process is provided in Fig. 2.

First, using an optical motion capture system (VICON), we
measure the experimental human motion data as a set of 3-D
marker trajectoriesn(t) € R3"~, wheren,, is the number
of markers. Two force sensor plates (AMTI) also measure
Fig. 2. Procedure for generating the robot motion trajgcfoom human ground contact f(_)rces and are synchronized to_ the rn_otlon
motion capture data. STEP1: measure the human motion datetmptical ~ Capture data spatially and temporally. One plate is postio
motion capture system, STEP2: estimate the COM trajectomy the force  beneath the chair and the other is under the subject’s feet.

plate data, STEP3: overlay the marker data onto the measwnenoid ; ;
robot posture, and STEP4: solve the inverse kinematics atatipn with From the six axis contact force measurement of each pIate,

1) the COM trajectory (hard) and 2) the marker trajectoryftjsas the W€ can compute the position of the center of pressure (COP)
constraints. Pcopexdt) € R2.
To estimate the human’s COM trajectory, we use a 155
DOF skeletal model [9], [10], (Fig. 3, right) with an av-

. . . erage set of human inertia properties. We use this model
forces, and realize a natural human-like motion on a huy-

! . . 0 map the motion capture markers to human joint angle
manoid robot in a complex environmental contact. Man

. : ata 0(t) € R™n, wheren;, is the number of degrees
robotics researches have considered the center of mass,
of freedom of the skeleton model. Then, we can compute

(GO a5 anescnta it e Paod 001 i Com an COP ety i e
’ P otion (pcomsim(t) € R* and pcopsin{t) € R?) based on

biped walking or the response to a sudden external force [ e skeletal models inertia parameters. There may be a

[7]. Indeed, for human sit-to-standing motion, biomeclkani . .
. . . difference between simulated and measured COP, because
researchers measured kinematic variance patterns during . : : . .
; . . the inertia properties are different between the subjedt an
repeated standing motions and concluded that precise COt L average h .

. - : : ge human. We, therefore, manually scale the link
trajectory control in the sagittal plane is a key component tlengths and masses of the skeletal model appropriatelyaso th
successful standing [8] . Therefore, in this work, our geal i . A o

X . _the resultingpcopsin{t) Matchespcopex{t) within 2cm to
not only record and playback natural human standing motlogblve 1). Lastly, the appropriate COM trajectasgovsim(t)
but also accurately measure the human’s COM trajector ' ’ sim
experimentally, and plan the humanoid robot's motion S0 computed. - .
that its COM \;viII trace that of human. Here the followin Next we generate the whole-body joint trajectory for the
difficulties should be solved: ' 9humanoid robot. Other researchers have explored mapping

' human motion capture data to humanoid robot motion, e.g.
1) The actual COM position of a human is difficult to ob-mapping the joint angle data, or tracing the end effector’s

tain, because accurate kinematics and mass properttegjectory. In this paper, we apply an inverse kinematics




Fig. 4. Top: Frame sequence of the human actor performingldmlye style standing motion. Bottom: The correspondingnanoid robot's standing
motion emulating the actor’s performance.

computation considering the motion capture marker data ashile respecting the measured marker trajectories as a soft
a constraint using the method proposed in [11]. We add themnstraint to emulate the human motion.

simulated human COM trajectory as an additional constraint

in the inverse kinematics computation. First, we adjust the

marker position on the humanoid robot model. To solve 2A. Experiments

and realize a Complicated contact Condition I|ke Sittingmn We eva|uate the proposed method on the Carnegie Mel_
chair, we experimentally measure the humanoid robot's joingn/Sarcos humanoid robot. This force controllable robot
angles in a sitting posture. Then we pick the correspondingss a total of 34 hydraulic actuators with a load sensor at
frame from the human motion capture data, and overlay th&ch joint, and a 6 axis force sensor at each foot. First, we
measured marker positions of that frame onto the measurggtorded human motion using the VICON optical motion
humanoid robot's posture. The relative position betweegapture system, while simultaneously measuring ground con
each marker and the corresponding humanoid robot's linct force with AMTI force plates. During motion capture,
is chosen as the robot's marker position set. The inertige asked our demonstrators not to move their feet during
parameters of humanoid robot that were estimated in thge motion or touch their hands to the chair or body. No
previous section and the robot marker position set gives thgher instructions such as speed or timing were given. While
Jacobian matrix of COM w.r.t. the joint angldscom(fr) € we recorded healthy subjects executing natural standing
R?*™r and that of the marker positions w.r.t. the joint anglesnotions, we also recorded a professional actor performing
Im(0r) € R¥"mxmir, wheren;, is the number of degrees stylized standing, including imitating an elderly persafter

of freedom of the humanoid robot. Lastly, we compute thenotion capture, we generate the corresponding robot motion
trajectory of the humanoid robot joint anglégt) € R™"  ysing the estimated robot COM parameters from Sec. Il and
iteratively that satisfiepcowmsim(t) as a hard constraint and the proposed inverse kinematics computation from Sec. Il.
m(t) as a soft constraint. The resulting joint angle trajectorginally we execute the planned trajectory, at full speed, on
maintains the desired COM trajectory strictly to keep be¢an the humanoid robot via joint PD control. Fig. 4 shows an

IV. EVALUATION
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Fig. 5. Sequence of a natural standing motion implementedthen
humanoid robot. 20.08 F
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. . P A human COM
example motion sequence. Here the professional actor js, | K COM
performing a stylized elderly stand up motion. The bottom exp COM
shows the corresponding robot sequence generated by the .~ [0 exp COP
proposed method, aligned in time with the demonstrategl """ ‘ ‘ ‘ ‘ ‘

0.5 1 1.5 2 2.5 3

motion. Fig. 5 shows the sequence that results from a °
demonstration of natural standing. From these frame shots,
we see that the humanoid robot successfully realizes tfh@. 6. COM and COP position in the longitudinal direction. tsne,

; ; ; ; e . for a natural standing motion. Chair lift-off occurs at ampgmately 1
human standing motion, while maintaining balance durmgzecond. Green dash line: the human COM position estimatea the

the whole motion. In the next subsection, we analyze th&perimental human motion data, blue solid line: the pldn@®M position
data measured during the humanoid robot experiment, afwd the generated humanoid robot motion, red solid line:e$temated COM

s position of the robot during the experiment, and red dasi lihe recorded
evaluate the efficiency of the proposed method. COP position of the robot during the experiment.

[sec]

B. Results
. . . . [m]0.75
Fig. 6 shows the COM and COP position in the longitudi-
nal direction, plotted against time in the horizontal afis, 071

the example of a natural standing motion shown in Fig. 5. 065
The vertical axis represents the COM and COP position [m]
with respect to the left foot position, and a positive value o6
represents the forward direction. Each line represents the
following value: 039

« green dashed line: the estimated COM position of the 05p
human demonstrator. The motion is captured by the |
optical motion capture system, and this COM is esti-
mated using a skeletal model whose inertial parameters o4
are from an average human but adjusted based on the Elderly with Estimated Parameters
recorded COP position (not shown). 03 Elderly with CAD Parameters

« blue solid line: the planned COM position for the gener- s - s - )
ated humanoid robot motion. The humanoid robot mo- ™' 005 0 003 o1 0[‘515]
tion is generated by the inverse kinematics computation

; i ; ; 9. 7. Robot COM position trajectory in the sagittal plaf@ed and
with COM position as a hard constraint. The Itera’[l\/égark blue lines: estimated COM trajectories for natural alurly motions

inverse kinematics optimization produces a very cloSgespectively) using estimated COM parameters from Se@dts mark the
match to the human’s COM trajectory. location of chair lift-off. Green and light blue lines: tesjtories for same

. red solid line: the estimated COM position from themotions if original CAD parameters are used for COM estiorati
experiment with the humanoid robot, computed by
forward kinematics from measured joint angles and the
COM parameters estimated from Sec Il.

« red dash line: the actual COP position in the experime%l
with the humanoid robot. The CMU/Sarcos humanoiqh
robot has 6-axis force sensors at each foot link, and t
COP position is computed from this contact force dat%
(not AMTI force plates as used in previous sections)s
Because of this approximation, the COP measureme

Normal with Estimated Parameters
Normal with CAD Parameters

ashed line), also follows the COM trajectory but with

is inaccurate due to the chair contact, until lift-off atkin
approximately 1 second.

From this graph, we see that the solid red line strictly
lows the green dashed line and blue solid line, showing
at the motion of the humanoid robot realizes the hu-
an’'s COM trajectory well. The COP position data (red

ome variance, because the generated motion is not quasi-
Oatic. Because we generated this motion from an inverse
ematics computation of experimental human motion data,
with kinematics constraints, dynamics constraints are not



considered. However, although the resulting motion is natonstraints such as ZMP trajectory. Additionally, since ou
quasi-static, it can still maintain balance throughout theobot is force-controllable, we would like to employ force
entire motion even though the contact situation changembntrol techniques such as inverse dynamics [13]. Doing
dramatically during the motion. so will require full inertial parameter estimation incladi

In Fig. 7 we compare the resulting COM trajectories, fromhe inertia tensors and joint friction. We have developed
the robot, for two different motions: natural standing jredtechniques for the estimation of floating base robots [4].
and stylized elderly (dark blue). Trajectories are shown ifinally, we would also like to include additional contacts
the sagittal plane (x vs. y position), and traverse towardduring a standing motion such as arm rests, and include arm
the right with time. In the elderly case, we see that th@ush off as part of the motion. Interestingly, while humans
COM actually first moves lower before rising, representingften use hand contact as an aid in standing up, for a robot
a deeper torso bend in order to move the COM closer to thkis may present an additional challenge.
feet and generate more momentum before lift off. This is
consistent with the strategy actually used by elderly stibje ACKNOWLEDGMENTS
[12]. At the end of the motion we also see the COM move The authors acknowledge the help and contributions of
back, possibly to compensate for the additional generat&duart Anderson for the development of the realtime control
momentum. Additionally we also plot how the resultingsoftware as well as the overall calibration of the hardware.
COM trajectories would have looked if CAD parameters
are used in the model, instead of our estimated inertial ) S
parameters from Sec II. We see that the estimation procedutd 'f*o'rMsae{?ja;nﬁn%ﬂl’ggrag?rﬁé'gfgfgezv;’ﬁé SA ;emgdﬁgfga;r;etc\%?l g
moves the COM significantly lower and towards the rear.  congressvol. 2, pp. 74-79, 1984.
This difference can mainly be attributed to the relatively[2] C. Atkeson, C. An, and J. Hollerbach, “Estimation of itir param-
massive backpack not accounted for in the CAD files. eters of manipulator loads and linksThe International Journal of

Robotics Researciian 1986.
V. CONCLUSION 3]

K. Ayusawa, G. Venture, and Y. Nakamura, “ldentificatiaf the
inertial parameters of a humanoid robot using unactuategudjcs of

In this work, we implemented a sit-to-stand task on a the base link,"8th IEEE-RAS International Conference on Humanoid
Robots pp. 1 — 7, Nov 2008.

humanoid robot, where the robot was able to successfull¥4] M. Mistry, S. Schaal, and K. Yamane, “Inertial parametstimation

stand up from a sitting posture. Our goal was not to engineer of floating base humanoid systems using partial force sgfisith

a stable robotic motion for this task, but rather to emulate . 'EEE-RAS International Conference on Humanoid Rob2@99.

t 'h lik t and d. Th i ég] W. Khalil and E. Dombre,Modeling, Identification, and Control of
natural human-iike movement and speea. erefore we us Robots London and Sterling, VA: Kogan Page Science, 2002.

demonstrations from healthy subjects naturally standipg u[6] T. Sugihara and Y. Nakamura, “Whole-body cooperativiaeing of

as well as actors performing styIized motions. Because humanoid robot using cog jacobian'2002 IEEE/RSJ International
Conference on Intelligent Robots and Systepms 2575-2580, 2002.

the dynamics plays a key roll in the realization of this [7] C. Ott, D. Lee, and Y. Nakamura, “Motion capture based ham
task, we also recorded the contact forces from our human motion recognition and imitation by direct marker contrdEEE-RAS

demonstrators. This contact force information, along with ~ Intemational Conference on Humanoid Robots 20pp. 399-405,
a skeletal model, allowed us to estimate the demonstratorig) j p 'scholz and G. Schoner, “The uncontrolled manifoticept:

COM trajectory along the motion. Maintenance of a consis-  identifying control variables for a functional taskZxp Brain Res
tent COM trajectory has been identified by biomechanics Vol 126, no. 3, pp. 289-306, Jun 1999. o
L . k[9] Y. Nakamura, K. Yamane, and A. Murai, “Macroscopic madgland
researchers as a critical control component of this task. identification of the human neuromuscular networRfbceedings of
Therefore, it was important for us to not only emulate the the 28th IEEE EMBS Annual International Conferenpp. 99-105,
demonstrator’s kinematic motion with our robot, but als 2006. . o
. . . 10] A. Murai, K. Yamane, and Y. Nakamura, “Modeling and itinng
their COM trajectory. However, in order to be able to d the somatic reflex network of the human neuromuscular system
so, we require an estimate of the robot's COM position.  Proceedings of the 29th IEEE EMBS Annual International €rerice,
To obtain as accurate an estimate as possible, we used an Lyon, FRANCE2007. o
. . . . . . . [11] K. Yamane and Y. Nakamura, “Natural motion animatiomotigh
inertial parameter estimation teChn'que to 'dent'fy thessna constraining and deconstraining at willEEE Transaction on Visual-
and center of mass parameters of a 5 link planar robot ization and Computer Graphicsol. 9, pp. 352-360, 2003.
model. We then used this model to estimate the robot's COM?2! E- Papa and A. Cappozzo, “Sit-to-stand motor strategieestigated
L. . . in able-bodied young and elderly subject3,"Biomechanicsvol. 33,
position during the motion. no. 9, pp. 1113-22, 2000.
While we had some success with this technique and W3] M. Mistry, J. Buchli, and S. Schaal, “Inverse dynamiasnirol of
were able to successfully track some of the demonstrators floating base systems using orthogonal decompositiBrgceedings

. . . of the 2010 IEEE Int. Conference on Robotics and Automa6a0.
at full speed, an obvious next step is to use more dynamic
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