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Graphical Model Basics  

This lecture is strongly influenced by Zoubin Ghahramani’s GM tutorials 



Probabilistic Graphical Models 

§  Marriage between probability theory 
and graph theory 

§  Tool for dealing with uncertainty, 
independence, and complexity 

§  Notion of modularity – a complex 
system that consists of simpler parts 

§  Probability theory is the “glue” for the 
individual parts 

§  Play an increasingly important role in 
robotics, vision, and machine learning 

 



Three Typical Graphical Models 

§  Nodes represent random variables 
§  Edges represent statistical dependencies 

between these variables 
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Why Graphical Models? 

§  Abstract out the conditional independence 
relationships between the variables from 
their parametric forms 

§  Directly answer questions: “Is A dependent 
on B given we know the value of C?” 

§  Allow to realize efficient message passing 
algorithms to do inference: 
“What is                 without enumerating all 
combination of variables?” 



Conditional Independence 

§  Conditional Independence 

§  as well as 

§  Conditional independence is different to the 
“normal”/marginal independence 



Conditional Independence Examples 

§  Speeding fine     type of car   speed 
§  Lung cancer     yellow teeth   smoker 
§  Ability of team A     ability of Team B 
§  NOT (ability of team A     ability of Team B   

    outcome of A vs. B game) 



Factor Graphs 

§  Two types of nodes 
§  Circles are random variables 
§  Boxes are factors in the joint distribution 
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Factors 

§  Factors (  ) are non-negative functions 
§  Two nodes are neighbors if they share a 

common factor (  ) 
§  The normalizer    ensures that the sum/

integral over the joint equals to 1 
§  E.g. 
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Two Different Factor Graphs 

A B 

C 

E D 

A B 

C 

E D 



Factor Graphs: Definitions and Facts 

§  Two nodes are neighbors if they share a 
common factor 

§  A path is a sequence of neighboring nodes 
§              if every path between X and Y 

contains some node   
§  E.g., 
§  Given the neighbors of              , 

the variable X is conditionally  
independent of all other variables 
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Proving Cond. Independence (Idea) 

§  Show:               given the FC 
§  CI: 
§  Factor graph: 
§  Summing over X: 

§  Dividing results in  

§  The r.h.s. does not depend on Y (but on V) 
§  The factorization implies cond. independence 

X YV

not dependent on Y 



Undirected Graphs 

§  Also called Markov networks or MRFs 
§  Defines a joint probability distribution based 

on the cliques of the graph 

§  where    are the cliques  
(fully connected subgraphs) 

§  Very similar to factor graphs! 
§  Here: 
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Cond. Independence 

§              if every path between    and 
contains some node   

§  V is a Markov Blanket for   
iff              for all  

§  A minimal Markov Blanket is 
a Markov Boundary 
 

§  For X, we have here  
§  Markov Blanket(s): 
§  Markov Boundary:  

X V’’ 

V 

Y V’ 



Markov Boundary 

§  A minimal Markov Blanket is a Markov 
Boundary 

§  For factor graphs and undirected 
graphical models, the Markov Boundary  
of X = 



Factors Graphs vs. Undirected G. 

§  The nodes always have the same neighbors 
§  All graphs encode the same conditional 

independence relations 
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Factors Graphs vs. Undirected G. 

§  The nodes always have the same neighbors 
§  All graphs encode the same conditional 

independence relations 
§  #3: encodes that only pairwise factors are 

needed to model the joint distribution 
§  Different complexities, cubic vs. quadratic!  
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Problems and Limitations 

§  Often two variables are connected because 
some other variable depends on them 

§  Many independencies are underrepresented 

§  Difference between independence and 
conditional independence 

Rain Sprinkler 

Ground 
wet 

Rain Sprinkler 
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Explaining Away 

§  Rain and sprinkler are independent (given 
nothing), but conditionally dependent given 
the ground is wet 

§  “Explaining Away”: Observing that the 
sprinkler is on, would explain away the 
observation that the ground was wet, 
making it less probable that it rained. 
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Directed Acyclic Graphs 

§  Also called Bayesian networks  
§  Arrows represent “influences” 
§  Results in the joint distribution 

§  In general 
Rain Sprinkler 

Ground 
wet 



Example 

§  In general 
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D-Separation and Cond. Independence 

§               if    d-separates    from 
§     d-separates    from    if every undirected 

path between    and    is blocked by     
§  A path is blocked by    if there is a node W 

on the graph such that either: 
§  W has converging arrows along the path  

(→ W ←) and neither W nor its descendants are 
observed (in V), or 

§  W does not have converging arrows along the 
path (→ W → or ← W →) and W is observed  
(W      ). 



D-Separation Examples 
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§    
§  not  
§    
§  not  

§  For Bayesian networks: Markov Boundary  
of X = 



Expressiveness (1) 

§  No directed acyclic graph can represent these 
any only these independencies 

§  No matter how we direct the arrows there will 
always be two non-adjacent parents sharing a 
common child. This implies dependence in the 
directed graph but independence in undirected 
graph 

  



Expressiveness (2) 

§  No undirected graph of factor graph can 
represent these any only these independencies 

§  Directed graphs are better at expressing causal 
generative models, undirected graphs are better at 
representing soft constraints between variables. 

  

  



Plate Notation 

§  A set of n random points generated by a 
Gaussian 

    



Summary 

§  Three typical graphical models 
§  Factor graphs 
§  Undirected graphs / Markov networks 
§  Directed graphs / Bayesian networks 

§  Independence and conditional independence 
§  Markov boundaries and d-separation 
§  Directed vs. undirected graphs 

§  Directed graphs are better at expressing causal 
generative models  

§  Undirected graphs are better at representing soft 
constraints between variables. 

  


