2.1. Pose in 2D

^A x_i.B = (x,y,th)
R = [cos(th) -sin(th); sin(th) cos(th)]

Example: ^A p = ^A R_B * ^B p

R \in SO(2) = Special Orthogonal Group: \(-\)R = R' and det (R) = +1

Also note that R(-th) = (-1)R(th) so rotation ccw is the inverse of rotation cw

Why only one parameter, th? 4 elements in a 2x2 matrix

Col (row) orthogonality ==> one constraint
Col (row) normality ==> two constraints

Therefore only 1 dof, so only one parameter is needed

Accounting for translation - eqs.(2.7 - 2.10)

Define SE(2) with elements known as homogeneous transformations

Notation: xi(x,y,th) \sim htform

Orange box. Give result of composition and inverse.

Introduce matlab toolbox function, se2(x,y,th)

Matlab example in fig 2.8

Introduce e2h (euclidean to homogeneous) and h2e

Introduce homtrans

The pose of a rigid body is defined by three variables:

\[
\begin{bmatrix}
^A t_{B,x} \\
^A t_{B,y} \\
\theta
\end{bmatrix} = \begin{bmatrix}
^A t_{B}
\end{bmatrix}
\]

where ^A t_B \in \mathbb{R}^2 = \text{space of 2-dimensional vectors}

\(a.k.a. \text{, Euclidean 2-space} \)

\(\theta \in S^1 = [0, 2\pi) \)

\(a.k.a. \text{, the circle of dimension 1} \)

Translate origin of \{B\} by \(t \) relative to \{A\}, i.e. ^A t_B

Rotate \{B\} about its new origin by \(\theta \).

Corke derives the 3-by-3 homogeneous transformation matrix that maps a point from \{B\} to \{A\}.
that maps a point from \{B\} to \{A\}.

\[
{^A T^*_B} = \begin{bmatrix}
{^A R_B} & {^A t_B} \\
0 & 0 & 1
\end{bmatrix}_{(3 \times 3)} = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) & (t_B)^x \\
\sin(\theta) & \cos(\theta) & (t_B)^y \\
0 & 0 & 1
\end{bmatrix}
\]

\[
{^A X_B} \quad {^A Y_B} \quad \text{origin of \{B\}}
\]

direction direction expresses in \{A\} and written in homogeneous form.

\[
{^A \tilde{p}} = {^A T^*_B} {^B \tilde{p}}
\]

where \({^B \tilde{p}} = \begin{bmatrix} p \\ 1 \end{bmatrix} \) is the homogeneous form of \(p \).

\[
\begin{bmatrix}
{^A p} \\
1
\end{bmatrix} = \begin{bmatrix}
{^A R_B} & {^A t_B} \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
{^B p} \\
1
\end{bmatrix} = \begin{bmatrix}
{^A R_B} {^B p} + {^A t_B} \\
1
\end{bmatrix}
\]

\({^A R_B} {^B p} \) expresses \(p \) in \{A\}.

\({^A t_B} \) adds the displacement.

\({^A R_B} \) is needed to write the \({^B p} \) vector in \{A\} so it can be
added to the other vector in \(\{ A \} \), namely \(A^t \).

\[\text{Special Euclidean Group } SE(2) = SO(2) \times \mathbb{R}^2 \]

\(\mathbb{R}^2 \) = Euclidean group = 2-dimension vector space.

"x" = Cartesian product or set product each element of \(SO(2) \) is combined with each element of \(\mathbb{R}(2) \)

\(R \in SO(2) \), SO stands for Special Orthogonal group of 2x2 matrices

\[A_{2\times2} \in SO(2) \iff A^T = A^{-1} \Rightarrow A^T A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2\times2} \]

and \(\det(A) = 1 \)

Let \(a_1 \) and \(a_2 \) be columns of \(A \), ie, \(A = [a_1, a_2] \).

\[A^T A^{-1} = I_{2\times2} \Rightarrow \|a_1\| = 1 \]

\[\|a_2\| = 1 \]

\[a_1^T a_2 = 0 \]

\(\left\{ \text{3 constraints} \right\} \)
A \((2 \times 2)\) matrix has 4 elements.
3 constraints \(\Rightarrow\) \(A\) has only 1 free variable!
\(\therefore\) Planar orientation can be represented with one variable!

\(\text{SO}(2)\) is a nice way to represent 2d orientation because it handles wrap-around

Combining an element of \(\text{SO}(2)\) and \(\mathbb{R}^2\) yields an element of \(\text{SE}(2)\).

Since \(\text{SO}(2)\) is 1-dimensional and \(\mathbb{R}^2\) is 2-dimensional, \(\text{SE}(2)\) is 3-dimensional.

Therefore 3 variables are needed to define a planar pose.

Each element of \(\text{SE}(2)\) is said to represent a rigid body displacement in the plane.

A couple special results:

\[
\Theta^A_{\Sigma_B} \sim (^A T_B)^T = \begin{bmatrix} ^A R_B & ^A t_B \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} ^A R_B^T & -^B R_A^T \cdot ^A t_B \\ 0 & 1 \end{bmatrix}
\]
\[^{A}_{B} T_{C} \odot ^{A}_{C} T_{C} = ^{A}_{C} T_{C} = \begin{bmatrix} ^{A}_{B} R_{c} & ^{A}_{B} t_{c} \\ 0 &1 \end{bmatrix} \]

Given \(R = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \), one can always find \(\theta \) by:

\[\theta = \text{atan2}(r_{21}, r_{11}) \]

Rotations in the plane commute, i.e. \(R_{1} R_{2} = R_{2} R_{1} \)

Matlab functions:

\[\text{se2}(x,y,\theta) \quad \text{se2}(1,2,\pi/6) = \begin{bmatrix} \sqrt{3}/2 & -1/2 & 1 \\ 1/2 & \sqrt{3}/2 & 2 \\ 0 & 0 & 1 \end{bmatrix} \]

axis
trplot2
hold on
plot_point
inv
e2h
h2e
homtrans