2.2. Pose in 3D

Eq.(2.11)
2.2.1. Representing orientation

Euler's the - any orientation can be achieved by a sequence of 3 rotations different
coordinate axes
Introduce SO(3). It has 3 dof
Rotations do not commute, i.e., operator (+) is not commutative.
Orientation representations: R matrix, Euler and Cardan angles, axis-angle, and unit quat
2.2.2. Combining translation and rotation

Introduce SE (3)
4×4 Htform
Pose of a 3-d rigid body is an element of SE(3)

$$
\begin{align*}
& \operatorname{SE}(3)=S O(3) \times \mathbb{R}^{3} \\
& { }^{A} T_{B}=\left[\begin{array}{cc}
{ }^{1} R_{B} & { }^{4} t_{B} \\
000 & 1
\end{array}\right]_{(4 \times+)}, \quad t \in \mathbb{R}^{3},{ }^{A} R_{B} \in S O(3)
\end{align*}
$$

Note: R is (3×3).
${ }^{\omega} P_{B}={ }^{A} T_{B}{ }^{5} p_{p}$, where

$$
\tilde{p}=\left[\begin{array}{l}
p \\
1
\end{array}\right]_{(4 \times 1)}
$$

The product inverse formulas for T remain unchanged.

$$
\begin{aligned}
& \hat{\theta}^{A} \xi_{B} \sim\left(T_{B}^{A}\right)^{-1}=\left[\begin{array}{cc}
{ }^{A} R_{B} & { }^{A} t_{B} \\
00 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
{ }^{A} R_{B}^{T} & -R_{A}{ }^{\top}{ }^{A} t_{B} \\
00 & 1
\end{array}\right] \\
& { }^{A} \xi_{B} \oplus^{B} \xi_{C} \sim{ }^{A} T_{B}{ }^{B} T_{C}={ }^{A} T_{C}=\left[\begin{array}{cc}
{ }^{1} R_{B}^{B} R_{C} & { }^{A} t_{B}{ }^{A} R_{B}^{B} t_{C} \\
\hdashline 0^{0} 0^{0} & 1
\end{array}\right]_{(4 \times 4)}
\end{aligned}
$$

However:
(1) rotations do NOT Commute
(2) mapping from R to parametric representations can have singularities.

If $A \in S O(3)$, then $A^{-1}=A^{\top}$ and $\operatorname{det}(A)=1$.

$$
\therefore \quad \begin{array}{ll}
\therefore a_{1}^{\top} a_{1}=1 & a_{1}^{\top} a_{2}=0 \\
a_{2}^{\top} a_{2}=1 & a_{2}^{\top} a_{3}=0
\end{array}
$$

$$
a_{3}^{\top} a_{3}=1 \quad a_{3}^{\top} a_{1}=0
$$

A has 9 elements and 6 constraints
$\therefore A$ has 3 degrees of freedom

Eulers theorem:
$R \in S O(3)$ can be constructed from a sequence of three rotations about coordinate axes.

$$
\text { eg. } R_{z}(\psi) \cdot R_{y}(\theta) \cdot R_{x}(\phi)
$$

Note: a rotation about a given axis is a planar rotation.

$$
\left.\begin{array}{ll}
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\theta} & -s_{\theta} \\
0 & s_{0} & c_{\theta}
\end{array}\right] & \text { where } s_{\theta}=\sin (\theta) \\
c_{\theta}=\cos (\theta)
\end{array}\right]
$$

Graphical interpretation of rotation matrix: ${ }^{A} R_{B}=\left[\begin{array}{lll}A_{1} \hat{X}_{B} & \hat{y}_{B} & \hat{z}_{B}\end{array}\right]$

$$
{ }^{A} \hat{X}_{B}=\left[\begin{array}{c}
\cos (\psi) \\
\sin (\psi) \\
0
\end{array}\right] \quad \Delta \hat{y}_{B}=\left[\begin{array}{c}
-\sin (\psi) \\
\cos (\psi) \\
0
\end{array}\right]
$$

Euler's theorem says that given $R=\left[\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ 31 & r_{32} & r_{33}\end{array}\right]$, a solution to the following equation exists:

$$
R=R_{z}(\psi) R_{y}(\theta) R_{x}(\phi)
$$

However, soln is not necessarily unique!
2.2.1.2. Three -Angle Representations

Euler angles: Rotate about one axis, then another, then the first. $x y x, z x z, \ldots$

Cardan angles: Use all three axes: $x y Z, \ldots$

The toolbox uses $z y z$ Euler angles:

$$
\begin{aligned}
\Rightarrow \quad R & =\operatorname{rotz}(0.1)+\operatorname{roty}(0.2)+\operatorname{rotz}(0.3) \\
& =\operatorname{eul2}(0.1,0.2,0.3) \\
T & =\operatorname{tr2eul}(R)=(0.1,0.2,0.3)
\end{aligned}
$$

Solution is not unique!
The toolbox always returns the solution with $\theta>0$.

$$
\operatorname{tr2eul}(\operatorname{eul} 2 r(0.1,-0.2,0.3))=(-\pi+0.1,0.2,-\pi+0.3)
$$

The tool box also uses roll-pitch-yaw angles

$$
\begin{aligned}
R & =\operatorname{rot} x\left(\theta_{r}\right) * \operatorname{rot} y\left(\theta_{p}\right) * \operatorname{rotz}\left(\theta_{y}\right) \\
& =\operatorname{rpy} 2 r\left(\theta_{r}, \theta_{p}, \theta_{y}\right) \\
\Gamma & =\operatorname{tr} 2 \operatorname{rpy}(R)
\end{aligned}
$$

Again 2 solutions exist in generic cases.

Inverse kinematics solution for $z-y-z$ Euler angles

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=R_{z}(\phi) R_{y}(\theta) R_{z}(\psi)
$$

\Rightarrow rotate about original z by ϕ then " " new y by θ new z by ψ
Expand the product of rotation matrices

$$
R=\left[\begin{array}{c:c:c}
c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\
s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\
-s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}
\end{array}\right]
$$

Generic solution:
$\theta=\cos ^{-1}\left(r_{33}\right) \Longrightarrow$ two solutions, θ_{1} and $\theta_{2}=-\theta_{1}$

$$
\Rightarrow \begin{aligned}
& \theta_{1}=\cos ^{-1}\left(r_{33}\right) \\
& \theta_{2}=-\theta_{1}
\end{aligned}
$$

Note that: $\quad \sin \theta_{1}=+\sqrt{1-r_{33}^{2}}$

$$
\begin{aligned}
& \sin \theta_{2}=-\sqrt{1-r_{33}^{2}} \\
& \begin{aligned}
r_{13} & =c_{\phi} s_{\theta_{i}} \\
r_{23} & \left.=s_{\phi} s_{\theta_{i}}\right\}
\end{aligned} \\
&\left.\Rightarrow \begin{array}{l}
c_{\phi}=r_{13} / s_{\theta_{i}} \\
s_{\phi}=r_{23} / s_{\theta_{i}}
\end{array}\right\} \Rightarrow \phi=\operatorname{atan} 2\left(r_{23} / s_{\theta_{i}}, r_{13} / s_{\theta}\right) \\
& i=\{1,2\}
\end{aligned}
$$

$$
\begin{aligned}
& r_{31}=-s_{\theta} c_{\psi} \\
& r_{32}=s_{\theta} s \psi \\
& \Rightarrow \psi_{1}=\operatorname{atan} 2\left(r_{32},-r_{31}\right) \\
& \psi_{2}=\operatorname{atan} 2\left(-r_{32}, r_{31}\right)=\psi_{1}+\pi
\end{aligned}
$$

2.2.1.3. Singular Configurations \& Gimbal Lock

All three-parameter representations have singular configurations.

Example zyz Euler Angles
if rotation about $\hat{y}=0$ or π, then \hat{z} after y-rotation is about \hat{z} or $-\hat{z}$ after y-rotation.

After 1st Rot

In singular cases, $\operatorname{rotz}(\phi)+\operatorname{roty}(\theta)+\operatorname{rot} z(\psi)$ reduces:

$$
\begin{aligned}
& \theta=0 \Rightarrow \operatorname{rotz}(\phi) * I_{(3 \times 3)} * \operatorname{rotz}(\psi)=\operatorname{rotz}(\phi+\psi) \\
& \theta=\pi \Rightarrow \operatorname{rotz}(\phi) *\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] * \operatorname{rotz}(\psi)=\operatorname{rotz}(\phi-\psi)
\end{aligned}
$$

In singular cases:

$$
R=\left[\begin{array}{ccc}
\pm c_{\phi} c_{\psi}-s_{\phi} s_{\psi} & \mp c_{\phi} s_{\psi}-s_{\phi} c_{\psi} & 0 \\
\pm s_{\phi} c_{\psi}+c_{\phi} s_{\psi} & \mp s_{\phi} s_{\psi}+c_{\phi} c_{\psi} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Apply angle sum and difference formulas:

$$
\left.\begin{array}{c}
\sin (\phi \pm \psi)=s \phi c_{\psi} \pm c_{\phi} s_{\psi} \\
\cos (\phi \pm \psi)=c_{\phi} c_{\psi} \mp s_{\phi} s_{\psi}
\end{array}\right\} \Rightarrow \text { } \begin{array}{cc}
\\
R=\left[\begin{array}{ccc}
\cos (\phi \pm \psi) & -\sin (\phi \pm \psi) & 0 \\
\sin (\phi \pm \psi) & \cos (\phi \pm \psi) & 0 \\
0 & 0 & \pm 1
\end{array}\right]
\end{array}
$$

\Rightarrow if $r_{33} \simeq 1$

$$
\begin{aligned}
& \theta=0 \\
& \phi+\psi=\operatorname{atan} 2\left(r_{21}, r_{11}\right) \\
& r_{33} \simeq-1 \\
& \theta=\pi \\
& \phi-\psi=\operatorname{atan} 2\left(r_{21}, r_{11}\right)
\end{aligned}
$$

$$
\text { else } r_{33} \simeq-1
$$

There is an infinite number of solutions:
θ is unique and $\phi+\psi$ (or $\phi-\psi$) is unique, but $\phi \$ \psi$ are not unique.
In singular configs, tr2rpy sets $\phi=0$ by default.

Singular configurations lose degrees of freedom.(see Fig 2.13)
When two axes of a gimbal align, rotation about an axis perpendicular to the remaining two is impossible!
2.2.1.4 Two Vector Representations

Perhaps there are features on the end effector to define
 orientation.

Any two non-parallel vectors can define an orientation:
Given $a \notin \theta$:

$$
\left.\left.\begin{array}{l}
a=\text { approach } \\
b=\text { another }
\end{array}\right\} \Rightarrow \begin{array}{l}
\hat{a}=\frac{a}{\|a\|} \\
\frac{b \times \hat{a}}{\|b \times \hat{a}\|}=\hat{n}
\end{array}\right\} \Rightarrow \hat{a} \times \hat{n}=\hat{\theta}
$$

toolbox function: $\operatorname{ao} 2 \operatorname{tr}(b, a) \Rightarrow R=\left[\begin{array}{lll}\hat{n} & \hat{\theta} & \hat{a}\end{array}\right]$ treas () \leftarrow not implemented. not needed
2.2.1.5. Rotation about an arbitrary vector

Any rotation R can be represented by an axis and an angle of rotation about that axis, (θ, v)

Rodrigues' Formula

$$
\begin{aligned}
& { }^{A} R_{B}=I_{(3 \times 3)}+\sin (\theta) S(v)+(1-\cos (\theta))\left(v^{v} v^{\top}-I(3 \times 3)\right) \\
& \text { where } S(v)=\left[\begin{array}{ccc}
0 & -v_{z} & v_{y} \\
v_{z} & 0 & -v_{x} \\
v_{y} & v_{x} & 0
\end{array}\right] \text { and }\|v\|=1 .
\end{aligned}
$$

The \# of parameters is 4: $\theta, v_{x}, v_{y}, v_{z}$,
but $\|v\|=1$, is a constraint, so still R has only three degrees of freedom!

Toolbox function: $\operatorname{angvec} 2 \operatorname{tr}\left(\theta,\left[N_{1} v_{2} v_{3}\right]\right) \Rightarrow T$ a R

$$
\text { tr2angrec }((T o r R)) \Rightarrow \theta, v
$$

2.2.1.6. Unit Quaternions, a.k.a. Euler Parameters.

A quatemion, \dot{q}, is 4 elements interpreted as a scalar and a hyper-complex number

$$
\begin{array}{rlrl}
\dot{q} & =s+v_{1} i+v_{2} j+v_{3} k \quad \text { where } \quad i^{2}=j^{2}=k^{2}=-1 \\
& =s+v \\
& =s\left\langle v_{1}, v_{2}, v_{3}\right\rangle & & i j k=-1
\end{array}
$$

We use unit quaternions to represent rotations:

$$
\text { i.e. } \quad s^{2}+\|v\|=1
$$

Again we have 4 parameters and 1 constraint, \therefore unit quatemions provide 3 degrees of freedom.

Angle vector interpretation:

Angle vector interpretation:

$$
s=\frac{\cos (\theta)}{2} \quad v=\frac{\sin (\theta)}{2} \hat{n}
$$

Note:

where rotation

$$
\dot{q}=-\dot{q}
$$

is relative to \hat{n}

Quaternion composition is efficient

$$
\dot{q} \oplus \dot{q}^{\prime}=\left[\begin{array}{cccc}
s & v_{1} & v_{2} & v_{3} \\
-v_{1} & s & -v_{3} & v_{2} \\
v_{2} & v_{3} & s & -v_{1} \\
-v_{3} & -v_{2} & v_{1} & s
\end{array}\right]\left[\begin{array}{c}
s^{\prime} \\
v_{1}^{\prime} \\
v_{2}^{\prime} \\
v_{3}^{\prime}
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
16 \text { multiplications } \\
12 \text { additions }
\end{array}\right.
$$

However $R R^{\prime} \Rightarrow\left\{\begin{array}{l}27 \text { mull. } \\ 18 \text { add. }\end{array}\right.$

How was the above matrix-vector multiplication rule derived?
Use the usual rules for multinomial multiplication and apply the identities relating i, j, k

$$
\begin{gathered}
(s+\underbrace{v_{1} i+v_{2} j+v_{3} k}_{v})(\underbrace{t}_{s^{\prime}} \underbrace{}_{v^{\prime} \text { - } \underbrace{u_{1}+u_{2} j+u_{3} k}_{\text {renamed these in }})} \begin{array}{c}
\text { the mat-vee operation } \\
\\
\text { above. } \\
s t+s u+t v+\ldots \\
\ldots-v_{1} u_{1}-v_{2} u_{2}-v_{3} u_{3}+v_{1} u_{2} k+v_{2} u_{3} i+v_{3} u_{1} j+\ldots \\
\ldots-v_{2} u_{1} k-v_{3} u_{2} i-v_{1} u_{3} j
\end{array}
\end{gathered}
$$

Collect the scalar, i, j, and k components to construct the matrix and vector above.

The best thing about unit quaternions is that there are no singular configurations!

Let $\dot{q}_{-}=a\langle b, c, d\rangle$ (temorrarilu replace $s\left\langle v_{1}, v_{2}, v_{3}\right\rangle$)

Mapping \dot{q} to R

$$
R(\dot{q})=\left[\begin{array}{lll}
2\left(a^{2}+b^{2}\right)-1 & 2(b c-a d) & 2(b d+a c) \\
2(b c+a d) & 2\left(a^{2}+c^{2}\right)-1 & 2(c d-a b) \\
2(b d-a c) & 2(c d+a b) & 2\left(a^{2}+d^{2}\right)-1
\end{array}\right]
$$

Mapping $R \rightarrow \dot{q}$
Let $R=\left[\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right]$ and
replacing 1 in $R(\dot{q})$ with $a^{2}+b^{2}+c^{2}+d^{2}$ yields:

$$
\begin{align*}
& a^{2}=\frac{1}{4}\left(1+r_{11}+r_{22}+r_{33}\right) \tag{'}\\
& b^{2}=\frac{1}{4}\left(1+r_{11}-r_{22}-r_{33}\right) \tag{f}\\
& c^{2}=\frac{1}{4}\left(1-r_{11}+r_{22}-r_{33}\right) \tag{3}\\
& d^{2}=\frac{1}{4}\left(1-r_{11}-r_{22}+r_{33}\right) \tag{4}
\end{align*}
$$

These equations imply 16 solutions, but only 2 exist.
Off-diagonal terms give:
(5) $\quad a b=\frac{1}{4}\left(r_{32}-r_{23}\right) \quad b c=\frac{1}{4}\left(r_{12}+r_{21}\right)$
(6) $\quad a_{c}=\frac{1}{4}\left(r_{13}-r_{31}\right) \quad b d=\frac{1}{4}\left(r_{13}+r_{31}\right)$
(7) $\quad a d=\frac{1}{4}\left(r_{21}-r_{12}\right) \quad c d=\frac{1}{4}\left(r_{23}+r_{32}\right)$

Soln approach:
(1) Use equation (1), (2), (3), or (4) with largest value to get 2 values of a, b, c, or d.
(2) Use 3 egs from (5-10) to solve for other 3 values
(3) Result is 2 solutions satisfying $\dot{q}_{1}=-\dot{q}_{2}$

Alg.
If $\operatorname{trace}(R)>0$
solve eq (1) for $a=\frac{1}{2} \sqrt{\operatorname{tr}(R)+1}$
solve for b, c, d using equations (5-7)

$$
\text { eq (5) yields } \Rightarrow b=\frac{r_{32}-r_{23}}{4 a}
$$

$$
e q(6) \quad \Rightarrow \text { simitar }
$$

$e q(7) \Rightarrow$ similar
else if $r_{11}=\max \left(r_{11}, r_{22}, r_{33}\right)$
Solve for b using eq (2)
solve for a, c, d using eggs $(5,8,9)$
else if $r_{22}=\max \left(r_{11}, r_{22}, r_{33}\right)$
Solve for c using eq (3)
Solve for a, b, d using eq g $(6,8,10)$
else
Solve for d using eg (4)
Solve for a, b, c using $\operatorname{egs}(7,9,10)$
end
finally $\dot{q}_{1}=(a, b, c, d) \not \dot{q}_{2}=-\dot{q}$
are the two solutions.

Todbox functions for quaternions

$q=$ Quatemion (R)	
$q \cdot R$	$q \cdot \operatorname{norm}$
$q \cdot \operatorname{plot}()$	$q \cdot \operatorname{lnv}()$

To see all the methods, type "methods(Quaternion)"
Toolbox functions for SE (3) transl (x, y, z)
$\operatorname{trot} x(\theta), \operatorname{troty}(\theta), \operatorname{trotz}(\theta)$
$\operatorname{trplot}(T)$

$$
\operatorname{tr} r(T)=R
$$

example :

$$
{ }^{A} T_{c}=\operatorname{transl}(v) * \operatorname{trotz}(\theta)
$$

See table 2.1 \& figure 2.15 for a complete list.

