2.2_PoseIn3D

Monday, May 28, 2012 1:22 PM

Eq.(2.11)

2.2.1. Representing orientation

Euler's thm - any orientation can be achieved by a sequence of 3 rotations different coordinate axes

Rotations do not commute, i.e., operator (+) is not commutative.

Orientation representations: R matrix, Euler and Cardan angles, axis-angle, and unit quat

2.2.2. Combining translation and rotation

Pose of a 3-d rigid body is an element of SE(3)

$$SE(3) = SO(3) \times \mathbb{R}^3$$

$$^{A}T_{B} = \begin{bmatrix} ^{A}R_{B} & ^{A}t_{B} \\ 000 & 1 \end{bmatrix}, \quad t \in \mathbb{R}^{3}, \quad ^{A}R_{B} \in SO(3)$$

Note: R is (3×3).

$$\tilde{p} = \begin{bmatrix} p \\ 1 \end{bmatrix}_{(4xi)}$$

The product & inverse formulas for T remain unchanged.

$$\mathfrak{S}_{8} \sim (^{A}T_{8})^{-1} = \begin{bmatrix} ^{A}R_{8} & ^{A}t_{8} \\ oo & i \end{bmatrix}^{-1} = \begin{bmatrix} ^{A}R_{8}^{T} & ^{B}R_{4}^{T} & ^{A}t_{8} \\ oo & 1 \end{bmatrix}$$

$${}^{A}S_{B} \oplus {}^{B}S_{C} \sim {}^{A}T_{0} \oplus {}^{C}T_{C} = {}^{A}T_{C} = \begin{bmatrix} {}^{A}R_{B}{}^{B}R_{C} & {}^{A}t_{B} + {}^{A}R_{B}{}^{B}t_{C} \\ \hline {}^{A}T_{C} & {}^{A}T_{C} & {}^{A}T_{C} & {}^{A}T_{C} \end{bmatrix}_{(4\times4)}$$

However:

- 1 rotations do NOT Community
- @ mapping from R to parametric representations can have singularities.

If $A \in SO(3)$, then $A^{-1} = A^{-1}$ and det(A) = 1.

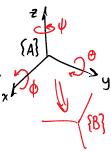
$$a_3^T a_3 = 1$$
 $a_3^T a_1 = 0$

A has 9 elements and 6 constraints

: A has 3 degrees of freedom

Eulers theorem:

 $R \in SO(3)$ can be constructed from a sequence of three rotations about coordinate axes. So $R_{2}(Y) \cdot R_{3}(\Theta) \cdot R_{3}(\Phi)$



Note: a notation about a given axis is a planar votation.

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{0} & -s_{0} \\ 0 & s_{0} & c_{0} \end{bmatrix} \qquad \text{where} \quad s_{0} = \sin(0) \\ c_{0} = \cos(\theta)$$

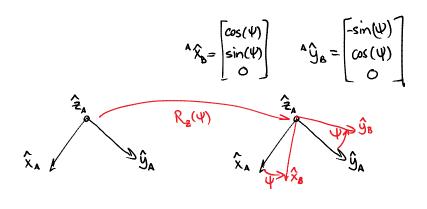
where
$$S_0 = Sin(0)$$

 $C_0 = Cos(0)$

$$R_{y}(\theta) = \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix}$$

$$R_{y}(\theta) = \begin{bmatrix} c_{0} & 0 & s_{0} \\ 0 & 1 & 0 \\ s_{0} & 0 & c_{0} \end{bmatrix} \qquad R_{z}(\theta) = \begin{bmatrix} c_{0} & -s_{0} & 0 \\ s_{0} & c_{0} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Gaphical interpretation of rotation matrix: AR= [1 x Ay Ay Az B]



Euler's theorem says that given $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$, a solution

to the following equation exists:

$$\mathcal{R} = \mathcal{R}_{z}(\Psi) \mathcal{R}_{y}(\Theta) \mathcal{R}_{x}(\phi)$$

However, soln is not necessarily unique!

2.2.1.2. Three-Angle Representations

Euler angles: Rotate about one axis, then another, then the first xyx, 2x2,

Cardan angles: Use all three axes: XYZ,

The toolbox uses ZYZ Euler angles:

$$R = rot_{2}(0.1) + rot_{3}(0.2) + rot_{2}(0.3)$$

$$= eul_{2}r(0.1, 0.2, 0.3)$$

$$T = tr2eu(R) = (0.1, 0.2, 0.3)$$

Solution is not unique!

The toolbox always returns the solution with 0>0.

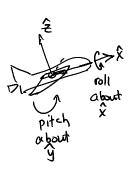
trzew (eul 2r (0.1, -0.2, 0.3)) = (-17+0.1, 0.2, -17+0.3)

The toolbox also uses toll-pitch-your angles

$$R = rot \times (\theta_r) * rot y (\theta_p) * rot * (\theta_y)$$

$$= rpy2r(\theta_r, \theta_p, \theta_y)$$

$$T = tr2rpy(R)$$



Again 2 solutions exist in generic cases.

Inverse kinematics solution for Z-y-Z Euler angles

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = R_{2}(\phi) R_{y}(\theta) R_{2}(\psi)$$

=> rotate about original 2 by \$\phi\$ then " " new y by \$\epsilon\$ " " new \$\text{2}\$ by \$\Psi\$

Expand the product of rotation matrices

Generic solution:

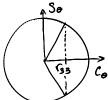
$$\Theta = \cos^{-1}(r_{33}) \implies \text{two subtions}, \ \Theta_1 \text{ and } \Theta_2 = -\Theta_1$$

$$\Rightarrow \Theta_1 = \cos^{-1}(r_{33})$$

$$\Theta_2 = -\Theta_1$$

Note that:
$$\sin \Theta_1 = \sqrt{1 - G_{33}^2}$$

 $\sin \Theta_2 = -\sqrt{1 - G_{32}^2}$



$$\begin{array}{l}
\Gamma_{13} = C_{\phi} S_{\Theta_{i}} \\
\Gamma_{23} = S_{\phi} S_{\Theta_{i}}
\end{array}$$

$$\begin{array}{l}
C_{\phi} = \Gamma_{13}/S_{\Theta_{i}} \\
S_{\phi} = \Gamma_{23}/S_{\Theta_{i}}
\end{array}$$

$$\begin{array}{l}
\Rightarrow \phi = a \tan 2(\Gamma_{23}/S_{\Theta_{i}}) \Gamma_{13}/S_{\Theta_{i}}$$

$$\vdots = \{1, 2\}$$

$$\Rightarrow \begin{array}{l} \phi_1 = \operatorname{atan2}(r_{23}, r_{13}) \\ \phi_2 = \operatorname{atan2}(r_{23}, -r_{13}) = \phi_1 + \pi \end{array}$$

$$r_{31} = -s_0 c_{\psi}$$

$$r_{32} = s_0 s_{\psi}$$

$$\Rightarrow \forall r_1 = atan 2(r_{32}, -r_{31})$$

$$\forall r_2 = atan 2(-r_{32}, r_{31}) = 4r + n$$

2.2.1.3. Singular Configurations & Gimbal Lock

All three-parameter representations have singular configurations.

Example 242 Euler Angles

if rotation about $\hat{y} = 0$ or π , then $\hat{z} = \text{Rot}_{y}(0)$ \hat{z} after y-rotation is $\hat{z} = \hat{z}$ if rotation about y-rotation.

After 1st Rotz

In singular cases, rotz(φ)+ roty(Θ) + rotz(ψ) reduces:

$$\Theta=0 \Rightarrow rot_2(\phi) * I_{(x,y)} * rot_2(\Psi) = rot_2(\phi+\Psi)$$

$$\Theta=\Pi \Rightarrow rot_2(\phi) * \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} * rot_2(\Psi) = rot_2(\phi+\Psi)$$

In singular cases:

$$R = \begin{bmatrix} \pm c_{\phi}c_{\psi} - s_{\phi}s_{\psi} & \mp c_{\phi}s_{\psi} - s_{\phi}c_{\psi} & 0 \\ \pm s_{\phi}c_{\psi} + c_{\phi}s_{\psi} & \mp s_{\phi}s_{\psi} + c_{\phi}c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Apply angle sum and difference formulas:

$$Sin(\phi \pm \psi) = S\phi C\psi \pm C\phi S\psi$$

$$Cos(\phi \pm \psi) = C\phi C\psi \mp S\phi S\psi$$

$$R = \begin{bmatrix} \cos(\phi \pm \psi) & -\sin(\phi \pm \psi) & 0 \\ \sin(\phi \pm \psi) & \cos(\phi \pm \psi) & 0 \\ 0 & 0 & \pm 1 \end{bmatrix}$$

if
$$r_{33} \simeq 1$$

$$\theta = 0$$

$$\phi + \psi = \operatorname{atan2}(r_{24}, r_{11})$$
else $r_{33} \simeq -1$

$$\theta = r_{11}$$

$$\phi - \psi = \operatorname{atan2}(r_{21}, r_{11})$$

There is an infinite number of solutions:

\(\theta\) is unique and \(\phi+\psi\) (or \(\phi-\psi\)) is unique,

but \(\phi\) \(\psi\) are not unique.

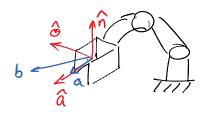
In singular configs, tr2rpy sets $\phi = 0$ by default.

Singular configurations lose degrees of freedom. (see Fig 2.13)

when two axes of a gimbal align, rotation about an axis perpendicular to the remaining two is impossible!

22.1.4 Two Vector Ropresentations

Perhaps there are features on the end effector to define orientation.



Any two non-parallel vectors can define an orientation:

Given a & o:

$$a = approach$$
 $\Rightarrow \hat{a} = \frac{a}{\|a\|}$ $\Rightarrow \hat{a} \times \hat{n} = \hat{o}$ $b = another$ $\Rightarrow \hat{b} \times \hat{a} = \hat{n}$

toolbox function: $ao2tr(b,a) \Rightarrow R = [\hat{n} \hat{o} \hat{a}]$ tr2ao() < not implemented. not needed

2.2.1.5. Rotation about an arbitrary vector

Any rotation R can be represented by an axis and an angle of rotation about that axis, (Θ, N)

Rodrigues' Formula

$${}^{A}R_{B} = I_{(3\times3)} + \sin(\Theta) S(v) + (1-\cos(\Theta))(v v^{T} - I_{(3\times3)})$$
where $S(v) = \begin{bmatrix} O - v_{L} & v_{J} \\ v_{L} & O - v_{L} \\ v_{L} & v_{L} & O \end{bmatrix}$ and $||v|| = 1$.

The # of parameters is $4: \Theta, N_x, N_y, N_z$,
but $||N_x|| = 1$, is a constraint, so still R has only three degrees of freedom!

Toolbox function: anguec2tr(θ , [N, N2 N3]) \Rightarrow TorR tr2anguec ((TorR)) $\Rightarrow \theta$, N

2.2.1.6. Unit Quaternions, a.k.a. Euler Pourameters.

A quaternion, q, is 4 elements interpretted as

a scalar and a hyper-complex number

$$\dot{q} = 3 + N_1 i + N_2 \dot{q} + N_3 \dot{k}$$
 where $i^2 = j^2 = k^2 = -1$
= $5 + N$ ig $k = -1$
= $5 < N_1, N_2, N_3 >$

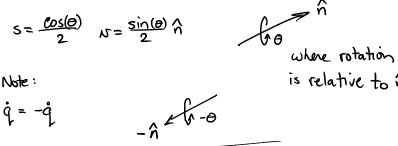
We use unit quaternions to represent rotations:

i.e. $s^2 + ||v|| = 1$

Again we have 4 parameters and 1 constraint, .: unit quaternions provide 3 degrees of freedom.

Angle vector interpretation:

Angle vector interpretation:



is relative to A

Note:

q = -q

Quaternion composition is efficient

$$\mathring{q} \oplus \mathring{q}' = \begin{bmatrix} S & N_1 & N_2 & N_3 \\ -N_1 & S & -N_3 & N_2 \\ N_2 & N_3 & S & -N_1 \\ -N_3 & -N_2 & N_1 & S \end{bmatrix} \begin{bmatrix} S^1 \\ N_1 \\ N_2 \end{bmatrix} \Longrightarrow \begin{cases} 16 \text{ multiplications} \\ 12 \text{ additions} \end{cases}$$

However RR' => {27 mult. 18 add.

How was the above matrix-vector multiplication rule derived? Use the usual rules for multinomial multiplication and apply the identities relating i, j, & k

(S+Ni+Nij+Njk) (t+u,i+u,i+u,i+u,i)

renamed these in

the mat-vec operation

st+su+tv+ ...

---- N, u, - Nzuz-Nzus + N, uzk + Nzuzi + Nzu, j + - Nzu,k- Nzuzi - N, u3 j

Collect the scalar, i, j, and k components to construct the motrix and vector above.

The best thing about unit quaternions is that there are no singular configurations.

Let $\dot{q} = a < b, c, d >$ (temporarily replace s<N, N2, N3) Mapping 9 to R $R(9) = \begin{bmatrix} 2(2+b^2)-1 & 2(bc-ad) & 2(bd+ac) \\ 2(bc+ad) & 2(a^2+c^2)-1 & 2(cd-ab) \\ 2(bd-ac) & 2(cd+ab) & 2(a^2+d^2)-1 \end{bmatrix}$

Mapping $R \rightarrow \dot{q}$ Let $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \end{bmatrix}$ and

replacing 1 in R(q) with a2+b2+c2+d2 yields:

$$a^2 = \frac{1}{4} (1 + \Gamma_{11} + \Gamma_{22} + \Gamma_{33}) \tag{1}$$

$$b^2 = \frac{1}{4}(1 + V'' - C^{57} - C^{33})$$

$$C^2 = \frac{1}{4}(1 - \Gamma_{11} + \Gamma_{22} - \Gamma_{33})$$
 (3)

These equations imply 16 solutions, but only 2 exist.

Off-diagonal terms give:

(5)
$$ab = \frac{1}{4}(\Gamma_{32} - \Gamma_{23})$$
 $bc = \frac{1}{4}(\Gamma_{12} + \Gamma_{14})$ (8)

(6)
$$ac = \frac{1}{4}(n_3 - r_{31})$$
 $bd = \frac{1}{4}(n_3 + r_{31})$ (9)

(7)
$$ad = \frac{1}{4}(r_{21} - r_{12})$$
 $cd = \frac{1}{4}(r_{23} + r_{32})$ (10)

Soln approach:

(1) Use equation (1), (2), (6), or (4) with largest value to get 2 values of a, b, c, or ol.

@ Use 3 egs from (5-10) to some for other 3 values

3 Result is 2 solutions satisfying $q=-q_2$

Alg.

If trace (R) > 0solve eq (1) for $a = \frac{1}{2}\sqrt{\text{tr}(R)+1}$ solve for b, c, d using equations (5-7) eq (5) yields $\Rightarrow b = \frac{32-\Gamma_{23}}{4a}$ eq (6) \Rightarrow similar eq (7) \Rightarrow similar

else if $r_{11} = \max(r_{11}, r_{22}, r_{33})$ Solve for b using eq(2) Solve for a, c, d using eqs(5,8,9)

else if $G_2 = \max(G_1, G_2, G_3)$ Solve for c using eq(8) Solve for a,b,a using eqs(6,8,10)

else solve for d using eq(4) solve for a, b, c using eqs(7,9,10)

end

finally q=(a,b,c,d) & q=-q.

are the two solutions.

Tadbox functions for quaternions

q = Quaternion (R)

q.R

q. norm

q.plot ()

q.1nv()

To see all the methods, type "methods (Quaternion)"

Toolbox functions for SE(3)

transl (x,y,z)

trotx (0), troty(0), trotz(0)

trplot(T)

t2r(T) = R transl(v) transl(v) transl(v) transl(v)example:

A $T_c = transl(v) * trotz(0)$

See table 2.1 \$ figure 2.15 for a complete list.