3.1.2 Multi-dimensional cases

$$
\begin{aligned}
s \in \mathbb{R}^{m} \quad \text { egg. } & s=(x, y, \theta) \in S E(2) \\
& s=(x, y, z, \dot{q}) \in S E(3) \\
s & =\left(q_{1}, q_{2}, \cdots, q_{M}\right) \in \text { Joint space }
\end{aligned}
$$

Generate splines by calling:

$$
\left.\begin{array}{rl}
{[s, \dot{s}, \dddot{s}]} & =\operatorname{mtraj}\left(@ t p o l y, s_{0}, s_{T}, N\right) \\
{[\cdots]} & =\operatorname{mtraj}(@ l s p d, \ldots
\end{array}\right)
$$

To see results:
figure; plot (s);
figure; plot (\dot{s});
figure; plot(norm(s)); etc.
3.1.3 Multi-Segment Trajectories

Follow a curve in sE(3) or joint space that passes through or near several "via points."

Consider the case of a single dimension.

Assume constant speed \dot{x} along green segments

Assume the red
curve blend smoothly

polynomial blend between the linear segments.

We need more assumptions to construct a unique spline. Assumptions:
speeds are constant along linear segments

$$
\dot{x}_{1}=\dot{x}_{N}=0
$$

$\dot{x}_{2}, \cdots, \dot{x}_{N-1}$ are given
$t_{\text {acc }}=$ acceleration time interval selected by the user.

The assumptions impose constraints on the blend curve.

$$
\begin{aligned}
& s\left(t_{k}-t_{\text {acc/2 }}\right)=\text { end position of linear segment } k \\
& s\left(t_{k}+t_{\text {acc/ }}\right)=\text { start } \\
& \dot{s}\left(t_{k}-t_{\text {acc }} / 2\right)=\dot{x}_{k} \\
& \dot{s}\left(t_{k}+t_{\text {acc }} / 2\right)=\dot{x}_{k+1} \\
& \ddot{s}\left(t_{k}-t_{\text {acc/ }}\right)=0 \\
& \ddot{s}\left(t_{k}+t_{\text {acc }} / 2\right)=0
\end{aligned}
$$

Five constraints suggest a polynomial blend with at least 6 coefficients - at least a quintic polynomial.

The toll box uses a quintic polynomial

$$
s(t)=a t^{5}+b t^{4}+c t^{3}+d t^{2}+e t+f .
$$

3.1.4 Interpolation of Orientation in 3D.

$$
R(t)=t R(0)+(1-t) R(1) ; 0 \leq t \leq 1
$$

This does not work, because $R(t) \ni S O(3)$!

What about interpolating roll, pitch, yaw on Euler angles?

The approach discussed thus for is:

$$
\left[r_{1}, p_{1}, y_{1}\right] \xrightarrow[\text { Ispb }]{\frac{m+a_{j}}{>}}\left[r_{2}, p_{2}, y_{2}\right] \Rightarrow R(t)
$$

where $R(0)=\operatorname{rpy} 2 r\left(r_{1}, p_{1}, y_{1}\right)$

$$
R(1)=r p y 2 r\left(r_{2}, p_{2}, y_{2}\right)
$$

Problem:
Rotation axis changes over the interpolation, - Uncoordinated looking

- changing angular velocity over time

Quaternions to the rescue!
$\operatorname{Slerp}\left(\dot{q}_{0}, \dot{q}_{f}\right) \rightarrow$ a great circle on S^{3} in \mathbb{R}^{4}

$$
\begin{aligned}
& \dot{q}(t)=\frac{\sin ((1-t) \Omega)}{\sin (\Omega)} \dot{q}_{0}+\frac{\sin (t \Omega)}{\sin (\Omega)} \dot{q}_{f} \\
& \|\dot{q}(t)\|=1 \\
& \Omega=\cos ^{-1}\left(\dot{q}_{0} \cdot \dot{q}_{f}\right)
\end{aligned}
$$

where \dot{q} is treated as an element of \mathbb{R}^{4} and "." is the usual dot product

See wikipedia page (google "geometric slerp")

Toolbox example:

$$
\left.\begin{array}{l}
q 0=\text { Quaternion }(\operatorname{rot} x(\pi) \\
q 1=\text { Quaternion }(\underline{\operatorname{rot} y(\pi / 2)} * \operatorname{rot} z(-\pi / 2) \tag{*}\\
q=\text { interp }\left(q 0, q 1,[0: 49]^{\prime} / 49\right)
\end{array}\right\}
$$

These calls yield 50 points linearly interpolated and equally spaced on a great circle on S^{3} embedded in \mathbb{R}^{4}

Notes:

- In 3D space, the rotation axis is fixed!
- If orientation curves pass through singularities $\frac{d}{d t}$ (orient parameters) $\rightarrow \infty$
(The right end of figures 3.6 b and 3.7 b exhibit this problem since yow $=\pi / 2$) Experiment a bit with this. Change 49 to 300 and change $\pi / 2$ to $\pi / 2+0.2$ and change $-\pi / 2$ to $-\pi / 2-0.2$
- Trajectories produced as done by (*) will have discontinuous velocity and accel. at the ends.

One possible solution
trinterp can accept normalized segment intervals

$$
R_{s}=\operatorname{trinterp}(R 0, R 1, \operatorname{lspb}(0,1,50))
$$

3.1.5 Cartesian Motion

Simply put orientation \& translation together.

$$
\begin{aligned}
& T_{s}=\operatorname{trinterp}\left(T_{0}, T_{1}, \operatorname{lspb}(0,1,50)\right) \\
& T_{s}=\operatorname{ctraj}\left(T_{0}, T_{1}, 50\right)
\end{aligned}
$$

