Joint Types:
- Revolute
- Prismatic

Arm Types:
- Revolute — all joints are revolute
- Scara — major links move in a horizontal plane. Usually used for vertical insertion tasks.

Task requirements:
- General tasks — end effector must have 6 dof.
 The set of end effector poses must be a 6D subset of \(\text{SE}(3) \).
- Vertical insertion tasks — end effector must cover a 4D subset of \(\text{SE}(2) \times \mathbb{I} \).
Pros - simpler, more accurate, faster
Cons - can't perform arbitrary tasks.

Workspace

The subset of \mathbb{R}^n where the origin of the tool frame can be placed, where $n = 2$ or 3.

$1R$ planar

\[W = S' \cap I' \]
with joint limits.

$1P$-planar

\[W = I' \]

$2R$-planar

with no joint limits,

\[W = \text{disc with a hole} \]

with joint limits

\[W = \text{disc} \]

W of $3R$-planar robot is similar.
W of all planar robots with small \# of R and P joints are easy to construct via enumeration.

Dexterous Workspace, W_0

Def: The subset of W that can be reached with all end effector orientations.

Desirable for W_0 to be 2D for planar robots and 3D for spatial robots.

Necessary conditions:

- **Planar case:** At least one revolute joint w/o limits and at least two other joints to position the end effector.
- **Spatial case:** At least three revolute joints and at least three other joints to position the end effector.

Note: Joint limits will reduce volume of dexterous workspace.

Solutions for boundary of W_0:

- **3D:** Analytical solutions do not exist
 - Exact numerical solutions are very expensive.
- **2D:** Analytical solutions should exist
 - Exact numerical solutions should be easy to compute.
A topological perspective for 3R-planar robots

Pin the end effector to the ground and check if it can be rotated by \(2\pi\) radians.

Theorem:

Let \(L = \sum_{i=1}^{4} l_i \). Iff \(l_i + l_j \geq \frac{1}{2}L \ \forall \ i,j \in \{1,2,4\} \), then \(l_3 \) may rotate \(2\pi\) radian while pinned at \(p \).

If thm. is satisfied at \(p \), then it is satisfied at all points on the circle of radius \(l_4 \).

Now vary \(l_4 \) to "thicken" the dexterous workspace.

Experiment with some numbers.

Let \(l_1 = 5 \), \(l_2 = 4 \), \(l_3 = 1 \).

Also let \(\lambda_i \) be the \(i \)th longest link.

From the theorem, \(l_3 \) must be the shortest link and

\[
\lambda_2 + \lambda_3 > \frac{1}{2}L = \frac{1}{2}(l_1 + l_2 + l_3 + l_4)
\]
Clearly $0 \leq l_4 \leq 10$.

How big can l_4 be and still satisfy the conditions?

If $l_4 \geq 5$, then we require $l_1 + l_2 > \frac{1}{2}(l_1 + l_2 + l_3 + l_4)$

<table>
<thead>
<tr>
<th>l_4</th>
<th>$l_2 + l_3$</th>
<th>$l/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9.5</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>8.5</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>7.5</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>6.5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1.9</td>
<td>5.9</td>
<td>5.95</td>
</tr>
</tbody>
</table>

Note: The theorem is valid for any number of revolute joints and prismatic joints can be incorporated by allowing the link lengths to vary.
Standard Denavit-Hartenberg parameters

This is a minimal representation
Only 4 parameters:
 3 are constant
 1 is variable

Frame assignment

- Identify joint axes.
 Label them \(z_j \), \(j=1,2,\ldots,N \)
- Identify common normal of \(z_{j-1} \) and \(z_j \), \(\forall j \)
 Label them \(x_j \)
- Define parameters
 \[\theta_j = \text{angle about } z_{j-1} \text{ from } x_{j-1} \text{ to } x_j \]
 \[d_j = \text{distance along } z_{j-1} \text{ from origin } \{j-1\} \text{ to origin } \{j\} \]
 \[a_j = \text{distance along } x_j \text{ from } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \]
 (i.e., the distance between \(z_{j-1} \) and \(z_j \))
 \[\alpha_j = \text{angle about } x_j \text{ from } z_{j-1} \text{ to } z_j \]

Note: coordinate frames need not have origins inside the links.
\(\sigma_j = \begin{cases} 0 & \text{joint } j \text{ is revolute, and } \theta_j \text{ is the joint var.} \\ 1 & \text{joint } j \text{ is prismatic, and } d_j \text{ is the joint var.} \end{cases} \)

Relative pose:

\[
\begin{align*}
\hat{\gamma}_j A_j &= T_{Rz}(\theta_j) \ T_z(d_j) \ T_x(c_j) \ T_{Rx}(\alpha_j) \\
&= \begin{bmatrix}
C \theta & -S \alpha C \theta & S \alpha S \theta & a C \theta \\
S \theta & C \alpha C \theta & C \alpha S \theta & a S \theta \\
0 & -S \alpha & C \alpha & d \\
0 & 0 & 0 & 1
\end{bmatrix}_j
\end{align*}
\]

where all quantities have subscript, \(j \)

Note error in text. "\(a \)" is correct, not "\(\alpha \)".

Terminology:

Robot configuration: \(q \in \mathbb{R}^n \), \(q = [q_1, q_2, \ldots, q_n] \)

where \(q_i = \begin{cases} \theta_i & \text{if } \sigma_i = 0 \\ d_i & \text{if } \sigma_i = 1 \end{cases} \)

\(L = \text{link}([0, 0.1, 0.2, \pi/2, 0]) \)