Recall the Forward Kinematics Problem:
Determine ${ }^{\circ} T_{E}$ given joint displacements, q Corker's notation $\quad \xi=K(q)={ }^{0} T_{E}(q)$
solution is unique
Forward Kinematic Map
Inverse Kinematics Problem:
Determine q given ${ }^{\circ} T_{E}$, ie. $q=K^{-1}\left(T_{E}\right)$. when a solution exists, it is probably not unique,

Recall DH t'forms:

$$
\begin{aligned}
& A=R_{z} T_{z} T_{x} R_{x} \\
& \{0\} \rightarrow R_{z}\left(q_{1}\right) T_{z}\left(d_{1}\right) T_{x}\left(a_{1}\right) R_{x}\left(\alpha_{1}\right) \rightarrow\{1\} \\
& \{1\} \rightarrow R_{z}\left(q_{2}\right) T_{z}\left(d_{2}\right) T_{x}\left(a_{2}\right) R_{x}\left(\alpha_{2}\right) \rightarrow\{2\} \\
& \vdots \\
& \vdots \\
& \vdots \\
& \vdots N-1\} \rightarrow R_{z}\left(q_{N}\right) T_{z}\left(d_{N}\right) T_{x}\left(a_{N}\right) R_{x}\left(\alpha_{N}\right) \rightarrow\{N\} \\
& \\
& { }^{0} A_{1}\left(q_{1}\right)^{\prime} A_{2}\left(q_{2}\right)^{2} A_{3}\left(q_{3}\right) \cdots^{N-2} A_{N-1}\left(q_{N-1}\right)^{N-1} A_{N}\left(q_{N}\right)={ }^{0} T_{N}(q)
\end{aligned}
$$

Given ${ }^{0} T_{N, \text { target, }}$ solve for $q \not{ }^{0} T_{N}(q)={ }^{0} T_{N, \text { target }}$
7.3.1 Closed-Form Solutions

Necessary condition - spherical wrist
\Rightarrow last three axes intersect at a single point,

Spherical wrist \Rightarrow

- origins of $\{N-2\},\{N-1\}, \mp\{N\}$ coincide,

$$
\begin{aligned}
a_{j}=d_{j}=0, & j \in\{N-1, N\} \\
{ }^{N-2} A_{N-1} & =R_{z}\left(q_{N-1}\right) \\
{ }^{N-1} R_{x}\left(\alpha_{N-1}\right) & =R_{z}\left(q_{N}\right) \quad R_{x}\left(\alpha_{N}\right)
\end{aligned}
$$

- position of wrist center is independent of $q_{N-2}, q_{N-1} \notin q_{N}$

Closed-form solution procedure

$$
\begin{aligned}
& \text { losed-torm solution procedure } \\
& { }^{W} T_{0}^{0} T_{N}\left(q_{N}\right)^{N} T_{E}={ }^{W} T_{E \text {, Target. }} T_{\text {homogeneous }} \text { f'form } \\
& \text { group all constant trans formations }
\end{aligned}
$$

$$
\begin{aligned}
& \left({ }^{w} / T_{0}\right)^{-1}{ }^{w} T_{0}^{0} T_{N}{ }^{N} T_{E}\left({ }^{N} T_{E}\right)^{-1}=\left(T_{0}^{w}\right)^{-1} T_{E, \text { Target }}\left(T_{E}\right)^{-1} \\
& { }^{0} T_{N}(q)={ }^{w} T_{0}^{-1}{ }^{w} T_{E, \text { Target }}{ }^{N} T_{E}^{-1} \\
& { }^{0} T_{N}(q)={\frac{}{}{ }^{0} T_{N, \text { Target }}}_{L} \text { known }
\end{aligned}
$$

Next, translation and orientation subproblems

$$
\left.{ }^{0} T_{N}(q)={ }^{0} A_{1}\left(q_{1}\right) A_{2}\left(q_{2}\right) \cdots{ }^{N-1} A_{N}\left(q_{N}\right)\right)^{0} T_{N, \text { Ta get }}
$$

For simplicity, assume $N=6$.

Expand A matrix product to reveal:

$$
\left[\begin{array}{cc:c}
0 R_{6}\left(q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}\right) & t_{6}\left(q_{1}, q_{2}, q_{3}\right) \\
\hdashline 0 & 0 & 0
\end{array}: 1\right]\left[\begin{array}{cc:c}
0 & R_{6, \text { Target }} & t_{6, \text { Target }} \\
\hdashline 0 & 0 & 0
\end{array}\right]
$$

Solve for q_{1}, q_{2}, q_{3} using ${ }^{0} t_{6}\left(q_{1}, q_{2}, q_{3}\right)={ }^{0} t_{6, \text { Target }}$
Then solve for q_{4}, q_{5}, q_{6} using ${ }^{\circ} R_{6}(q)={ }^{0} R_{6, \text { Target }}$

$$
\begin{aligned}
& { }^{0} R_{3}\left(q_{1}, q_{2}, q_{3}\right)^{3} R_{6}\left(q_{4}, q_{5}, q_{6}\right)={ }^{0} R_{6, \text { Target }} \\
& { }^{3} R_{6}\left(q_{4}, q_{5}, q_{6}\right)={ }^{3} R_{0}\left(q_{1}, q_{2}, q_{3}\right)^{0} R_{6, \text { Target }} \\
& { }^{3} R_{6}\left(q_{4}, q_{5}, q_{6}\right)={ }^{3} R_{6, \text { Target }}
\end{aligned}
$$

Translation solution

$$
t_{\gamma}\left(q_{1}, q_{2}, q_{3}\right)=t_{r, \text { Target }} ; \quad r \in\{x, y, z\}
$$

trigonometric polynomials linear in $\sin \left(q_{1}\right) \cos \left(q_{1}\right), \sin \left(q_{2}\right), \ldots$ Look for equations with solutions; e.g.

$$
a \cos \left(q_{1}\right)+b \sin \left(q_{1}\right)=c, \quad a, b, c \in \mathbb{R}
$$

then $q_{1}=\operatorname{atan} 2(b, a) \pm \operatorname{atan} 2\left(\sqrt{a^{2}+b^{2}-c^{2}}, c\right)$
Closed-forminverse kinematic solutions of 6-dof robot arms
can be found in many text books.
Craig's book, "Intro. to Robotics" has the solution of the puma 560 .

Uniqueness:

- Inv. kin. solutions are generally not unique.
- Most 6-joint robots have 8 inv. kin. solutions for each ${ }^{0} T_{6, \text { target. }}$.
- If ${ }^{\circ} T_{6, \text {,arget corresponds to a singular config of the arm, }}$ then there will be an infinite \# of solutions.

Planar Example: Inv. Kin. of 3R-Planar Manipulator

DH Parameters

i	θ_{i}	d_{i}	a_{i}	α_{i}
1	q_{1}	0	l_{1}	0
2	q_{2}	0	l_{2}	0
3	q_{3}	0	0	0
4	0	0	l_{3}	0

or let $a_{3}=l_{3}$, then $\{4\} \equiv\{3\}$.

Inv. Kin solution.

$$
\begin{aligned}
& { }^{0} T_{1}\left(q_{1}\right)^{1} T_{2}\left(q_{2}\right)^{2} T_{3}\left(q_{3}\right)^{3} T_{4}={ }^{0} T_{4}(q) \\
& { }^{0} T_{4}(q)=\left[\begin{array}{ccc}
c_{123} & -s_{123} & l_{1} c_{1}+l_{2} c_{12}+l_{3} c_{123} \\
s_{123} & c_{123} & l_{1} s_{1}+l_{2} s_{12}+l_{3} s_{123} \\
0 & 0 & 1
\end{array}\right] \\
& { }^{0} T_{4, \text { target }}=\left[\begin{array}{ccc}
c_{\phi} & -s_{\phi} & x_{\text {target }} \\
s_{\phi} & c_{\phi} & y_{\text {target }} \\
0 & 0 & 1
\end{array}\right] \\
& \text { Equate: }{ }^{0} T_{4}(q)=s_{1} s_{1} T_{4, \text { target }}
\end{aligned}
$$

Nontrivial equations:

$$
\begin{align*}
& \phi_{\text {target }}=q_{1}+q_{2}+q_{3} \tag{1}\\
& x_{\text {target }}=l_{1} c_{1}+l_{2} c_{12}+l_{3} c_{123} \tag{2}\\
& y_{\text {target }}=l_{1} s_{1}+l_{2} s_{12}+l_{3} s_{123} \tag{3}
\end{align*}
$$

Drop "target" subscript for simplicity.

Note that $C_{123}=C_{\phi}$ and $S_{123}=S_{\phi} \quad \therefore$

$$
\begin{align*}
& x-l_{3} c_{\phi}=l_{1} c_{1}+l_{2} c_{12} \tag{4}\\
& y-l_{3} s_{\phi}=l_{1} s_{1}+l_{2} s_{12} \tag{5}
\end{align*}
$$

Wrist position is fixed by choice of ${ }^{\circ} T_{4}$, target

Two solution exist elbow-up \& elbow-down

Square \& add (4) \& (5) to eliminate q.
Let $x-l_{3} c_{\phi}=x_{w}, \quad y-l_{3} s_{\phi}=y_{w}$

$$
\begin{aligned}
\left(x_{w}\right. & \left.=l_{1} c_{1}+l_{2} c_{12}\right)^{2} \\
+\left(y_{w}\right. & \left.=l_{1} s_{1}+l_{2} s_{12}\right)^{2} \\
x_{w}^{2}+y_{w}^{2} & =l_{1}^{2} c_{1}^{2}+2 l_{1} l_{2} c_{1} c_{12}+l_{2}^{2} c_{12}^{2} \\
& +l_{1}^{2} s_{1}^{2}+2 l_{1} l_{2} s_{1} s_{12}+l_{2}^{2} s_{12}^{2} \\
& \frac{x_{w}^{2}+y_{w}^{2}-l_{1}^{2}-l_{2}^{2}}{2 l_{1} l_{2}}=\cos \left(q_{2}\right) \quad \sin \left(q_{2}\right)= \pm \sqrt{1-\cos ^{2}\left(q_{2}\right)}
\end{aligned}
$$

Two Solutions for q_{2}

$$
\begin{aligned}
& q_{21}=\operatorname{atan} 2\left(\sqrt{1-\cos ^{2}\left(q_{2}\right)}, \cos \left(q_{2}\right)\right) \\
& q_{22}=\operatorname{atan} 2\left(-\sqrt{1-\cos ^{2}\left(q_{2}\right)}, \cos \left(q_{2}\right)\right)
\end{aligned}
$$

When are the solutions valid?

$$
\begin{aligned}
& -1 \leq \frac{x_{w}^{2}+y_{w}^{2}-l_{1}^{2}-l_{2}^{2}}{2 l_{1} l_{2}} \leq 1 \Rightarrow \text { Workspace } \\
& -2 l_{1} l_{2} \leq x_{w}^{2}+y_{w}^{2}-l_{1}^{2}-l_{2}^{2} \leq 2 l_{1} l_{2} \\
& l_{1}^{2}+l_{2}^{2}-2 l_{1} l_{2} \leq x_{w}^{2}+y_{w}^{2} \leq l_{1}^{2}+l_{2}^{2}+2 l_{1} l_{2} \\
& \left(\left(l_{1}-l_{2}\right)^{2} \leq x_{w}^{2}+y_{w}^{2} \leq\left(l_{1}+l_{2}\right)^{2} \Rightarrow\right. \text { wrist cant be }
\end{aligned}
$$ too far from base or too close to base.

Now q_{2} is known and we know that $\phi=q_{1}+q_{2}+q_{3}$ How do we solve for q_{1} ?

Expand (4) and (5) and rearrange...

$$
\begin{aligned}
& x_{w}=l_{1} c_{1}+l_{2}\left(c_{1} c_{2}-s_{1} s_{2}\right) \\
& y_{w}=l_{1} s_{1}+l_{2}\left(c_{1} s_{2}+s_{1} c_{2}\right) \\
& {\left[\begin{array}{l}
x_{w} \\
y_{w}
\end{array}\right]=\left[\begin{array}{cc}
l_{1}+l_{2} c_{2} & -l_{2} s_{2} \\
l_{2} s_{2} & \underbrace{l_{1}+l_{2} c_{2}}_{1}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
s_{1}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{w} \\
y_{w}
\end{array}\right]=\left[\begin{array}{ll}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
s_{1}
\end{array}\right]} \\
& {\left[\begin{array}{l}
c_{1} \\
s_{1}
\end{array}\right]=\underbrace{\frac{1}{a^{2}+b^{2}}\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]\left[\begin{array}{l}
x_{w} \\
y_{w}
\end{array}\right]}_{\text {function of } q_{2}}}
\end{aligned}
$$

$$
\left[\begin{array}{l}
C_{1} \\
s_{1}
\end{array}\right]=\frac{1}{x_{w}^{2}+y_{w}^{2}}\left[\begin{array}{c}
a x_{w}+b y_{w} \\
-b x_{w}+a y_{w}
\end{array}\right]=\left[\begin{array}{l}
A\left(q_{2}\right) \\
B\left(q_{2}\right)
\end{array}\right]
$$

$q_{11}=\operatorname{atan} 2\left(B\left(q_{21}\right), A\left(q_{21}\right)\right) \quad$ A unique q_{1} for $q_{12}=\operatorname{atan} 2\left(B\left(q_{22}\right), A\left(q_{22}\right)\right)$, each solution of q_{2}.

Finally

$$
\begin{aligned}
& q_{31}=\phi-q_{11}-q_{21} \\
& q_{32}=\phi-q_{12}-q_{22}
\end{aligned}
$$

Total \# of solutions is 2 .

Organized Approach to Solving Inv. Kinematics Problems

$$
{ }^{0} T_{1}\left(q_{1}\right){ }^{1} T_{2}\left(q_{2}\right)^{2} T_{3}\left(q_{3}\right) \cdots^{N-1} T_{N}\left(q_{N}\right)={ }^{0} T_{N, \text { Target }}
$$

1.) Expand and note the nontrivial equations
2.) Look for equations that are easy to solve and attempt solution
3.) If not solved and some t'forms remain on the left side, premultiply by T^{-1}

$$
{ }^{1} T_{2}\left(q_{2}\right)^{2} T_{3}\left(q_{3}\right) \cdots{ }^{N-1} T_{N}\left(q_{N}\right)={ }^{0} T_{1}^{-1}\left(q_{1}\right)^{0} T_{N, \text { Target }}={ }^{1} T_{N, \text { Target }}(q)
$$

GO TO STEP 1.

Else, go to step 4
4.) STOP

For close form inv. kin. Solution to exist, you need a good design and maybe some luck.

If possible give your robot a spherical wrist.

Typically occuring equations with known solutions
1.) $\sin (q)=a$

$$
\begin{gathered}
q=\operatorname{atan} 2\left(a, \pm \sqrt{1-\cos ^{2}(q)}\right) \\
q_{2}=\pi-q_{1}
\end{gathered}
$$

2. solutions
2.) $\cos (q)=b$

$$
q=\operatorname{atan} 2\left(\pm \sqrt{1-\cos ^{2}(q)}, \cos (q)\right)
$$

$$
q_{2}=-q_{1}
$$

2 solutions
3. $d \sin (q)=a$
$d \cos (q)=b$

$$
q=\operatorname{atan} 2(a / d, b / d)
$$

1 solution

4. $a \cos (q)-b \sin (q)=0$

$$
\begin{aligned}
& \Rightarrow a \cos (q)=b \sin (q) \quad \text { OR }-a \cos (q)=-b \sin (q) \\
& q=\operatorname{atan} 2(\pm a, \pm b) \Rightarrow q_{1}=q_{2}+\pi
\end{aligned}
$$

2 solutions
5. $\begin{aligned} \sin \theta \sin \phi & =a \\ \cos \theta & \sin \phi\end{aligned}=b, \phi \& \theta$ unknown

Assume $\phi \neq n \pi, n \in \mathbb{Z}$ (the integers)

$$
\left.\begin{array}{l}
\theta_{1}=\operatorname{atan} 2\left(\frac{a}{\sin \phi}, \frac{b}{\sin \phi}\right) \\
\theta_{2}=\theta_{1}+\pi
\end{array}\right\} \text { Two solutions }
$$

What about ϕ ?

Square and add equations

$$
\begin{aligned}
& \left.\begin{array}{l}
s_{\theta}^{2} s_{\phi}^{2}=a^{2} \\
c_{\theta}^{2} s_{\phi}^{2}=b_{2}
\end{array}\right\} \Rightarrow s_{\phi}^{2}=a^{2}+b^{2} \\
& \sin \phi= \pm \sqrt{a^{2}+b^{2}} \Leftarrow \text { two solutions for } \sin \phi \\
& \phi= \pm \sin ^{-1}\left(\pm \sqrt{a^{2}+b^{2}}\right) \Leftarrow 4 \text { solutions for } \phi
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{1}=\sin ^{-1}\left(\sqrt{a^{2}+b^{2}}\right) \\
& \phi_{2}=\pi-\phi_{1} \\
& \phi_{3}=\phi_{2}+\pi \\
& \phi_{4}=\phi_{1}+\pi
\end{aligned}
$$

Note: There are still only 2 solutions for θ !
6. $\left\{\begin{array}{l}\sin \theta \sin \phi=a \\ \cos \theta \sin \phi=b\end{array}, \quad \theta \notin\right.$ unknown

$$
\left.\begin{array}{l}
\cos \phi=d \\
\sin \phi= \pm \sqrt{a^{2}+b^{2}} \\
\cos \phi=d
\end{array}\right\} \Rightarrow \phi=\operatorname{atan} 2\left(\pm \sqrt{a^{2}+b^{2^{\prime}}}, d\right)
$$

$$
\begin{aligned}
& \longrightarrow \theta=\operatorname{atan} 2(\pm a, \pm b) \equiv\left\{\begin{array}{l}
a \tan 2\left(\frac{a}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{(\cdot)}}\right) \\
a \tan 2\left(\frac{-a}{\sqrt{ }}, \frac{-b}{\sqrt{ }}\right)
\end{array}\right) \\
& \phi_{1}=\operatorname{atan} 2(\sqrt{ }, d) \Rightarrow \theta_{1}=\operatorname{atan} 2(a, b) \\
& \phi_{2}=-\phi_{1} \quad \Longrightarrow \theta_{2}=\theta_{1}+\pi
\end{aligned}
$$

2 solutions
7. $\quad a \cos (q)+b \sin (q)=c$

Let $\left.\begin{array}{rl}a & =r \cos (\alpha) \\ b & =r \sin (\alpha)\end{array}\right\} \Rightarrow \begin{aligned} & r= \pm \sqrt{a^{2}+b^{2}} \\ & \alpha=a \tan 2(b r\end{aligned}$

$$
\alpha=\operatorname{atan} 2(b / r, a / r)
$$

Substitute:

$$
r \cos (\alpha) \cos (q)+r \sin (\alpha) \sin (q)=c
$$

Simplify:

$$
\cos (q-\alpha)=c / r
$$

Solve for q :

$$
\begin{aligned}
& q-\alpha=\operatorname{atan} 2\left(\pm \sqrt{1-\frac{c^{2}}{r^{2}}}, \frac{c}{r}\right) \\
& q-\alpha=\operatorname{atan} 2\left(\pm \sqrt{r^{2}-c^{2}}, c\right)
\end{aligned}
$$

$$
q=\operatorname{atan} 2\left(\frac{b}{r}, \frac{a}{r}\right)+a \tan 2\left(\sqrt{a^{2}+b^{2}-c^{2}}, c\right)
$$

2 solutions
8.

$$
\left.\begin{array}{l}
a \cos (q)-b \sin (q)=c \\
a \sin (q)+b \cos (q)=d
\end{array}\right\}=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{c}
\cos (q) \\
\sin (q)
\end{array}\right]=\left[\begin{array}{l}
c \\
d
\end{array}\right] .\left[\begin{array}{l}
a \\
\sin (q)
\end{array}\right]=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{l}
c \\
-b \\
d
\end{array}\right] \quad \begin{aligned}
& \cos (q) \\
& \cos (q)=(a c+b d) /\left(a^{2}+b^{2}\right) \\
& \sin (q)=(a d-b c) /\left(a^{2}+b^{2}\right) \\
& q=\operatorname{atan} 2(a d-b c, a c+b d)
\end{aligned}
$$

unique solution!

Physical interpretation of case 8.
Rotation of a vector

Note: If you square and the two equations, you get $a^{2}+b^{2}=c^{2}+d^{2}$.
7.3.2 Numerical Inverse Kinematic Solutions

The basics will be presented in Chapter 8 . Just a few comments here.

- Numerical solution is required when closed-form solutions do not exist
- Num. Soln. does not give explicit control over the arm contig., ie., elbow-up, etc.
- Num. soln is usually much slower.

7.3.3. Under-Actuated Manipulators

A robot is under-actuated if it has fewer controllable joints than the \# of pose degrees of freedom (i.e. 6 in spatial systems, 3 in planar systems)

Special closed-form solutions can be derived.
For example, in the 2R-planar robot example, one could choose to solve equations (1) \& (2) and ignore equation (3).

General numerical algorithm is implemented in the robotics toolbox, but it is not robust for all robots \& starting guesses.

Example: 2R-Planar Manipulator
Inv. Kin. Problem given: p_{x}, p_{y}, ϕ
find:

$$
\begin{aligned}
& \text { find: } \\
& q \Rightarrow{ }^{0} T_{z}(q)=\left[\begin{array}{ccc}
c_{\phi} & -s_{\phi} & p_{x} \\
s_{\phi} & c_{\phi} & p_{y} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
q \Rightarrow \quad T_{2}(q)=\left[\begin{array}{ccc}
s_{\phi} & c_{\phi} & p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

There are only 2 joints, so solutions typically do not exist! Choose what to satisfy

$$
{ }^{\circ} T_{2}(q)=\left[\begin{array}{ccc}
c_{12} & -s_{12} & l_{1} c_{1}+l_{2} c_{12} \\
s_{12} & c_{12} & l_{1} s_{1}+l_{2} s_{12} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
c_{\phi} & -s_{\phi} & p_{x} \\
s_{\phi} & c_{\phi} & p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Nontrivial equations:

$$
\begin{align*}
& \phi=q_{1}+q_{2} \tag{1}\\
& p_{x}=l_{1} c_{1}+l_{2} c_{12} \tag{2}\\
& p_{y}=l_{1} s_{1}+l_{2} s_{12} \tag{3}
\end{align*}
$$

Choose to satisfy (1) \& (2) \Rightarrow

$$
\phi_{2}=q_{21}+q_{22}
$$

Other options:
Choose to satisfy $x \notin \phi$?
7.3.4 Redundant Manipulators

A manipulator is redundant if it has more joints than needed to achieve an arbitrary pose.

Closed-form solutions are possible if one joint displacement is chosen in advance. e.e. Barret WAM.

Numerical solutions tend to find solutions "nearest" the initial guess.

Example: 4R-Planan Robot
Choose target p_{x}, p_{y}, ϕ

$$
\begin{aligned}
& \phi=q_{1}+q_{2}+q_{3}+q_{4} \\
& p_{x}=l_{1} c_{1}+l_{2} c_{12}+l_{3} c_{123}+l_{4} c_{\phi} \\
& p_{y}=l_{1} s_{1}+l_{2} s_{12}+l_{3} s_{123}+l_{4} s_{\phi}
\end{aligned}
$$

Introduce another constraint!

Introduce another constraint!
For example, fix q_{4} at a desired value.
Then robot reduces to $3 R$-planar
 * solutions can be found.

